Improve PD011 detection to exclude non-pandas .values usage

Refactored pandas_vet helpers to more accurately distinguish between pandas and non-pandas sources for .values attribute access, explicitly excluding numpy and other irrelevant bindings. Added a new test fixture and snapshot for PD011, and updated test cases to use the fixture file.
This commit is contained in:
Dan 2025-11-01 13:31:05 -04:00
parent 76ac3465e9
commit bc87b705ea
4 changed files with 97 additions and 102 deletions

View file

@ -0,0 +1,38 @@
import pandas as pd
import numpy as np
def test_numpy_unique_inverse():
unique = np.unique_inverse([1, 2, 3, 2, 1])
result = unique.values
def test_numpy_unique_all():
unique = np.unique_all([1, 2, 3, 2, 1])
result = unique.values
def test_numpy_unique_counts():
unique = np.unique_counts([1, 2, 3, 2, 1])
result = unique.values
def test_numpy_typed_unique_inverse():
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from numpy.lib._arraysetops_impl import UniqueInverseResult
unique: UniqueInverseResult[np.uint64] = np.unique_inverse([1, 2, 3, 2, 1])
result = unique.values
def test_simple_non_pandas():
p = 1
result = p.values
def test_pandas_dataframe_values():
"""This should trigger PD011 - pandas DataFrame .values usage"""
import pandas as pd
x = pd.DataFrame()
result = x.values

View file

@ -18,6 +18,7 @@ pub(super) enum Resolution {
/// Test an [`Expr`] for relevance to Pandas-related operations.
pub(super) fn test_expression(expr: &Expr, semantic: &SemanticModel) -> Resolution {
match expr {
// Literals in the expression itself are definitely not pandas-related
Expr::StringLiteral(_)
| Expr::BytesLiteral(_)
| Expr::NumberLiteral(_)
@ -43,6 +44,7 @@ pub(super) fn test_expression(expr: &Expr, semantic: &SemanticModel) -> Resoluti
if matches!(name.id.as_str(), "self" | "cls") {
Resolution::IrrelevantBinding
} else {
// Function arguments are treated as relevant unless proven otherwise
Resolution::RelevantLocal
}
}
@ -52,72 +54,62 @@ pub(super) fn test_expression(expr: &Expr, semantic: &SemanticModel) -> Resoluti
| BindingKind::LoopVar
| BindingKind::Global(_)
| BindingKind::Nonlocal(_, _) => {
// Check if this binding comes from pandas or another relevant source
// Check if this binding comes from a definitively non-pandas source
if let Some(assigned_value) = find_binding_value(binding, semantic) {
// Check if the assigned value comes from pandas
if is_pandas_related_value(assigned_value, semantic) {
Resolution::RelevantLocal
} else {
// This is a non-pandas binding (e.g., literal, numpy, etc.)
// Recurse to check the assigned value
match test_expression(assigned_value, semantic) {
// If the assigned value is definitively not pandas (literals, etc.)
Resolution::IrrelevantExpression => {
Resolution::IrrelevantBinding
}
// If it's clearly pandas-related, treat as relevant
Resolution::RelevantLocal | Resolution::PandasModule => {
Resolution::RelevantLocal
}
// If we got IrrelevantBinding, it means we traced it back to a
// non-pandas source (e.g., numpy import), so keep it as irrelevant
Resolution::IrrelevantBinding => Resolution::IrrelevantBinding,
}
} else {
// If we can't determine the source, be conservative and treat as relevant
// If we can't determine the source, be liberal and treat as relevant
// to avoid false negatives (e.g., function parameters with annotations)
Resolution::RelevantLocal
}
}
BindingKind::Import(import)
if matches!(import.qualified_name().segments(), ["pandas"]) =>
{
BindingKind::Import(import) => {
let segments = import.qualified_name().segments();
if matches!(segments, ["pandas"]) {
Resolution::PandasModule
} else if matches!(segments, ["numpy"]) {
// Explicitly exclude numpy imports
Resolution::IrrelevantBinding
} else {
Resolution::IrrelevantBinding
}
}
_ => Resolution::IrrelevantBinding,
}
})
}
// Recurse for attribute access (e.g., df.values -> check df)
Expr::Attribute(attr) => test_expression(attr.value.as_ref(), semantic),
// Recurse for call expressions (e.g., pd.DataFrame() -> check pd)
Expr::Call(call) => {
// Check if this is a pandas function call
if let Some(qualified_name) = semantic.resolve_qualified_name(&call.func) {
let segments = qualified_name.segments();
if segments.starts_with(&["pandas"]) {
return Resolution::RelevantLocal;
}
// Explicitly exclude numpy function calls
if segments.starts_with(&["numpy"]) || segments.starts_with(&["np"]) {
return Resolution::IrrelevantBinding;
}
}
// For other calls, recurse on the function expression
test_expression(&call.func, semantic)
}
// For other expressions, default to relevant to avoid false negatives
_ => Resolution::RelevantLocal,
}
}
/// Check if an expression value is related to pandas (e.g., comes from pandas module or operations).
fn is_pandas_related_value(expr: &Expr, semantic: &SemanticModel) -> bool {
match expr {
// Literals are definitely not pandas-related
Expr::StringLiteral(_)
| Expr::BytesLiteral(_)
| Expr::NumberLiteral(_)
| Expr::BooleanLiteral(_)
| Expr::NoneLiteral(_)
| Expr::EllipsisLiteral(_)
| Expr::Tuple(_)
| Expr::List(_)
| Expr::Set(_)
| Expr::Dict(_) => false,
// Direct pandas module access
Expr::Name(name) => {
if let Some(binding_id) = semantic.resolve_name(name) {
let binding = semantic.binding(binding_id);
if let BindingKind::Import(import) = &binding.kind {
return matches!(import.qualified_name().segments(), ["pandas"]);
}
}
false
}
// Method calls on pandas objects
Expr::Attribute(attr) => {
// Check if the object being accessed is pandas-related
is_pandas_related_value(attr.value.as_ref(), semantic)
}
// Function calls - check if they're pandas functions
Expr::Call(call) => {
if let Some(qualified_name) = semantic.resolve_qualified_name(&call.func) {
return qualified_name.segments().starts_with(&["pandas"]);
}
false
}
// For other expressions, we can't easily determine if they're pandas-related
// so we return false to be conservative (treat as non-pandas)
_ => false,
}
}

View file

@ -269,53 +269,6 @@ mod tests {
",
"PD011_pass_node_name"
)]
#[test_case(
r"
import pandas as pd
import numpy as np
unique = np.unique_inverse([1, 2, 3, 2, 1])
result = unique.values
",
"PD011_pass_numpy_unique_inverse"
)]
#[test_case(
r"
import pandas as pd
import numpy as np
unique = np.unique_all([1, 2, 3, 2, 1])
result = unique.values
",
"PD011_pass_numpy_unique_all"
)]
#[test_case(
r"
import pandas as pd
import numpy as np
unique = np.unique_counts([1, 2, 3, 2, 1])
result = unique.values
",
"PD011_pass_numpy_unique_counts"
)]
#[test_case(
r"
import pandas as pd
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from numpy.lib._arraysetops_impl import UniqueInverseResult
import numpy as np
unique: UniqueInverseResult[np.uint64] = np.unique_inverse([1, 2, 3, 2, 1])
result = unique.values
",
"PD011_pass_numpy_typed_unique_inverse"
)]
#[test_case(
r"
import pandas as pd
p = 1
result = p.values
",
"PD011_pass_simple_non_pandas"
)]
#[test_case(
r#"
import pandas as pd
@ -426,6 +379,7 @@ mod tests {
)]
#[test_case(Rule::PandasUseOfInplaceArgument, Path::new("PD002.py"))]
#[test_case(Rule::PandasNuniqueConstantSeriesCheck, Path::new("PD101.py"))]
#[test_case(Rule::PandasUseOfDotValues, Path::new("PD011.py"))]
fn paths(rule_code: Rule, path: &Path) -> Result<()> {
let snapshot = format!("{}_{}", rule_code.noqa_code(), path.to_string_lossy());
let diagnostics = test_path(

View file

@ -0,0 +1,11 @@
---
source: crates/ruff_linter/src/rules/pandas_vet/mod.rs
---
PD011 Use `.to_numpy()` instead of `.values`
--> PD011.py:37:14
|
35 | import pandas as pd
36 | x = pd.DataFrame()
37 | result = x.values
| ^^^^^^^^
|