mirror of
https://github.com/astral-sh/ruff.git
synced 2025-11-19 12:16:43 +00:00
[ty] Update "constraint implication" relation to work on constraints between two typevars (#21068)
It's possible for a constraint to mention two typevars. For instance, in the body of ```py def f[S: int, T: S](): ... ``` the baseline constraint set would be `(T ≤ S) ∧ (S ≤ int)`. That is, `S` must specialize to some subtype of `int`, and `T` must specialize to a subtype of the type that `S` specializes to. This PR updates the new "constraint implication" relationship from #21010 to work on these kinds of constraint sets. For instance, in the example above, we should be able to see that `T ≤ int` must always hold: ```py def f[S, T](): constraints = ConstraintSet.range(Never, S, int) & ConstraintSet.range(Never, T, S) static_assert(constraints.implies_subtype_of(T, int)) # now succeeds! ``` This did not require major changes to the implementation of `implies_subtype_of`. That method already relies on how our `simplify` and `domain` methods expand a constraint set to include the transitive closure of the constraints that it mentions, and to mark certain combinations of constraints as impossible. Previously, that transitive closure logic only looked at pairs of constraints that constrain the same typevar. (For instance, to notice that `(T ≤ bool) ∧ ¬(T ≤ int)` is impossible.) Now we also look at pairs of constraints that constraint different typevars, if one of the constraints is bound by the other — that is, pairs of the form `T ≤ S` and `S ≤ something`, or `S ≤ T` and `something ≤ S`. In those cases, transitivity lets us add a new derived constraint that `T ≤ something` or `something ≤ T`, respectively. Having done that, our existing `implies_subtype_of` logic finds and takes into account that derived constraint.
This commit is contained in:
parent
1c7ea690a8
commit
c0b04d4b7c
2 changed files with 89 additions and 28 deletions
|
|
@ -180,16 +180,12 @@ This might require propagating constraints from other typevars.
|
|||
def mutually_constrained[T, U]():
|
||||
# If [T = U ∧ U ≤ int], then [T ≤ int] must be true as well.
|
||||
given_int = ConstraintSet.range(U, T, U) & ConstraintSet.range(Never, U, int)
|
||||
# TODO: no static-assert-error
|
||||
# error: [static-assert-error]
|
||||
static_assert(given_int.implies_subtype_of(T, int))
|
||||
static_assert(not given_int.implies_subtype_of(T, bool))
|
||||
static_assert(not given_int.implies_subtype_of(T, str))
|
||||
|
||||
# If [T ≤ U ∧ U ≤ int], then [T ≤ int] must be true as well.
|
||||
given_int = ConstraintSet.range(Never, T, U) & ConstraintSet.range(Never, U, int)
|
||||
# TODO: no static-assert-error
|
||||
# error: [static-assert-error]
|
||||
static_assert(given_int.implies_subtype_of(T, int))
|
||||
static_assert(not given_int.implies_subtype_of(T, bool))
|
||||
static_assert(not given_int.implies_subtype_of(T, str))
|
||||
|
|
|
|||
|
|
@ -753,30 +753,24 @@ impl<'db> Node<'db> {
|
|||
rhs: Type<'db>,
|
||||
inferable: InferableTypeVars<'_, 'db>,
|
||||
) -> Self {
|
||||
match (lhs, rhs) {
|
||||
// When checking subtyping involving a typevar, we project the BDD so that it only
|
||||
// contains that typevar, and any other typevars that could be its upper/lower bound.
|
||||
// (That is, other typevars that are "later" in our arbitrary ordering of typevars.)
|
||||
//
|
||||
// Having done that, we can turn the subtyping check into a constraint (i.e, "is `T` a
|
||||
// subtype of `int` becomes the constraint `T ≤ int`), and then check when the BDD
|
||||
// implies that constraint.
|
||||
// When checking subtyping involving a typevar, we can turn the subtyping check into a
|
||||
// constraint (i.e, "is `T` a subtype of `int` becomes the constraint `T ≤ int`), and then
|
||||
// check when the BDD implies that constraint.
|
||||
let constraint = match (lhs, rhs) {
|
||||
(Type::TypeVar(bound_typevar), _) => {
|
||||
let constraint = ConstrainedTypeVar::new_node(db, bound_typevar, Type::Never, rhs);
|
||||
let (simplified, domain) = self.implies(db, constraint).simplify_and_domain(db);
|
||||
simplified.and(db, domain)
|
||||
ConstrainedTypeVar::new_node(db, bound_typevar, Type::Never, rhs)
|
||||
}
|
||||
|
||||
(_, Type::TypeVar(bound_typevar)) => {
|
||||
let constraint =
|
||||
ConstrainedTypeVar::new_node(db, bound_typevar, lhs, Type::object());
|
||||
let (simplified, domain) = self.implies(db, constraint).simplify_and_domain(db);
|
||||
simplified.and(db, domain)
|
||||
ConstrainedTypeVar::new_node(db, bound_typevar, lhs, Type::object())
|
||||
}
|
||||
|
||||
// If neither type is a typevar, then we fall back on a normal subtyping check.
|
||||
_ => lhs.when_subtype_of(db, rhs, inferable).node,
|
||||
}
|
||||
_ => return lhs.when_subtype_of(db, rhs, inferable).node,
|
||||
};
|
||||
|
||||
let simplified_self = self.simplify(db);
|
||||
let implication = simplified_self.implies(db, constraint);
|
||||
let (simplified, domain) = implication.simplify_and_domain(db);
|
||||
simplified.and(db, domain)
|
||||
}
|
||||
|
||||
/// Returns a new BDD that returns the same results as `self`, but with some inputs fixed to
|
||||
|
|
@ -1258,14 +1252,85 @@ impl<'db> InteriorNode<'db> {
|
|||
let mut simplified = Node::Interior(self);
|
||||
let mut domain = Node::AlwaysTrue;
|
||||
while let Some((left_constraint, right_constraint)) = to_visit.pop() {
|
||||
// If the constraints refer to different typevars, they trivially cannot be compared.
|
||||
// TODO: We might need to consider when one constraint's upper or lower bound refers to
|
||||
// the other constraint's typevar.
|
||||
let typevar = left_constraint.typevar(db);
|
||||
if typevar != right_constraint.typevar(db) {
|
||||
// If the constraints refer to different typevars, the only simplifications we can make
|
||||
// are of the form `S ≤ T ∧ T ≤ int → S ≤ int`.
|
||||
let left_typevar = left_constraint.typevar(db);
|
||||
let right_typevar = right_constraint.typevar(db);
|
||||
if !left_typevar.is_same_typevar_as(db, right_typevar) {
|
||||
// We've structured our constraints so that a typevar's upper/lower bound can only
|
||||
// be another typevar if the bound is "later" in our arbitrary ordering. That means
|
||||
// we only have to check this pair of constraints in one direction — though we do
|
||||
// have to figure out which of the two typevars is constrained, and which one is
|
||||
// the upper/lower bound.
|
||||
let (bound_typevar, bound_constraint, constrained_typevar, constrained_constraint) =
|
||||
if left_typevar.can_be_bound_for(db, right_typevar) {
|
||||
(
|
||||
left_typevar,
|
||||
left_constraint,
|
||||
right_typevar,
|
||||
right_constraint,
|
||||
)
|
||||
} else {
|
||||
(
|
||||
right_typevar,
|
||||
right_constraint,
|
||||
left_typevar,
|
||||
left_constraint,
|
||||
)
|
||||
};
|
||||
|
||||
// We then look for cases where the "constrained" typevar's upper and/or lower
|
||||
// bound matches the "bound" typevar. If so, we're going to add an implication to
|
||||
// the constraint set that replaces the upper/lower bound that matched with the
|
||||
// bound constraint's corresponding bound.
|
||||
let (new_lower, new_upper) = match (
|
||||
constrained_constraint.lower(db),
|
||||
constrained_constraint.upper(db),
|
||||
) {
|
||||
// (B ≤ C ≤ B) ∧ (BL ≤ B ≤ BU) → (BL ≤ C ≤ BU)
|
||||
(Type::TypeVar(constrained_lower), Type::TypeVar(constrained_upper))
|
||||
if constrained_lower.is_same_typevar_as(db, bound_typevar)
|
||||
&& constrained_upper.is_same_typevar_as(db, bound_typevar) =>
|
||||
{
|
||||
(bound_constraint.lower(db), bound_constraint.upper(db))
|
||||
}
|
||||
|
||||
// (CL ≤ C ≤ B) ∧ (BL ≤ B ≤ BU) → (CL ≤ C ≤ BU)
|
||||
(constrained_lower, Type::TypeVar(constrained_upper))
|
||||
if constrained_upper.is_same_typevar_as(db, bound_typevar) =>
|
||||
{
|
||||
(constrained_lower, bound_constraint.upper(db))
|
||||
}
|
||||
|
||||
// (B ≤ C ≤ CU) ∧ (BL ≤ B ≤ BU) → (BL ≤ C ≤ CU)
|
||||
(Type::TypeVar(constrained_lower), constrained_upper)
|
||||
if constrained_lower.is_same_typevar_as(db, bound_typevar) =>
|
||||
{
|
||||
(bound_constraint.lower(db), constrained_upper)
|
||||
}
|
||||
|
||||
_ => continue,
|
||||
};
|
||||
|
||||
let new_node = Node::new_constraint(
|
||||
db,
|
||||
ConstrainedTypeVar::new(db, constrained_typevar, new_lower, new_upper),
|
||||
);
|
||||
let positive_left_node =
|
||||
Node::new_satisfied_constraint(db, left_constraint.when_true());
|
||||
let positive_right_node =
|
||||
Node::new_satisfied_constraint(db, right_constraint.when_true());
|
||||
let lhs = positive_left_node.and(db, positive_right_node);
|
||||
let implication = lhs.implies(db, new_node);
|
||||
domain = domain.and(db, implication);
|
||||
|
||||
let intersection = new_node.ite(db, lhs, Node::AlwaysFalse);
|
||||
simplified = simplified.and(db, intersection);
|
||||
continue;
|
||||
}
|
||||
|
||||
// From here on out we know that both constraints constrain the same typevar.
|
||||
|
||||
// Containment: The range of one constraint might completely contain the range of the
|
||||
// other. If so, there are several potential simplifications.
|
||||
let larger_smaller = if left_constraint.implies(db, right_constraint) {
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue