[refurb] Implement delete-full-slice rule (FURB131) (#6897)

## Summary

This PR is a continuation of #6702 and me replicating `refurb` rules
(#1348). It adds support for
[FURB131](https://github.com/dosisod/refurb/blob/master/refurb/checks/builtin/no_del.py.

## Test Plan

I included a new test + checked that all other tests pass.
This commit is contained in:
Valeriy Savchenko 2023-08-29 01:52:38 +01:00 committed by GitHub
parent 3200015c06
commit c448b4086a
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
10 changed files with 610 additions and 143 deletions

View file

@ -0,0 +1,64 @@
from typing import Dict, List
names = {"key": "value"}
nums = [1, 2, 3]
x = 42
y = "hello"
# these should match
# FURB131
del nums[:]
# FURB131
del names[:]
# FURB131
del x, nums[:]
# FURB131
del y, names[:], x
def yes_one(x: list[int]):
# FURB131
del x[:]
def yes_two(x: dict[int, str]):
# FURB131
del x[:]
def yes_three(x: List[int]):
# FURB131
del x[:]
def yes_four(x: Dict[int, str]):
# FURB131
del x[:]
# these should not
del names["key"]
del nums[0]
x = 1
del x
del nums[1:2]
del nums[:2]
del nums[1:]
del nums[::2]
def no_one(param):
del param[:]

View file

@ -1459,7 +1459,7 @@ pub(crate) fn statement(stmt: &Stmt, checker: &mut Checker) {
}
}
}
Stmt::Delete(ast::StmtDelete { targets, range: _ }) => {
Stmt::Delete(delete @ ast::StmtDelete { targets, range: _ }) => {
if checker.enabled(Rule::GlobalStatement) {
for target in targets {
if let Expr::Name(ast::ExprName { id, .. }) = target {
@ -1467,6 +1467,9 @@ pub(crate) fn statement(stmt: &Stmt, checker: &mut Checker) {
}
}
}
if checker.enabled(Rule::DeleteFullSlice) {
refurb::rules::delete_full_slice(checker, delete);
}
}
Stmt::Expr(ast::StmtExpr { value, range: _ }) => {
if checker.enabled(Rule::UselessComparison) {

View file

@ -867,7 +867,6 @@ pub fn code_to_rule(linter: Linter, code: &str) -> Option<(RuleGroup, Rule)> {
// refurb
(Refurb, "113") => (RuleGroup::Nursery, rules::refurb::rules::RepeatedAppend),
_ => return None,
(Refurb, "131") => (RuleGroup::Nursery, rules::refurb::rules::DeleteFullSlice),
})
}

View file

@ -0,0 +1,184 @@
use ast::{ParameterWithDefault, Parameters};
use ruff_python_ast::helpers::map_subscript;
use ruff_python_ast::{self as ast, Expr, Stmt};
use ruff_python_semantic::analyze::type_inference::{PythonType, ResolvedPythonType};
use ruff_python_semantic::{Binding, BindingKind, SemanticModel};
/// Abstraction for a type checker, conservatively checks for the intended type(s).
trait TypeChecker {
/// Check annotation expression to match the intended type(s).
fn match_annotation(annotation: &Expr, semantic: &SemanticModel) -> bool;
/// Check initializer expression to match the intended type(s).
fn match_initializer(initializer: &Expr, semantic: &SemanticModel) -> bool;
}
/// Check if the type checker accepts the given binding with the given name.
///
/// NOTE: this function doesn't perform more serious type inference, so it won't be able
/// to understand if the value gets initialized from a call to a function always returning
/// lists. This also implies no interfile analysis.
fn check_type<T: TypeChecker>(binding: &Binding, name: &str, semantic: &SemanticModel) -> bool {
match binding.kind {
BindingKind::Assignment => match binding.statement(semantic) {
// ```python
// x = init_expr
// ```
//
// The type checker might know how to infer the type based on `init_expr`.
Some(Stmt::Assign(ast::StmtAssign { value, .. })) => {
T::match_initializer(value.as_ref(), semantic)
}
// ```python
// x: annotation = some_expr
// ```
//
// In this situation, we check only the annotation.
Some(Stmt::AnnAssign(ast::StmtAnnAssign { annotation, .. })) => {
T::match_annotation(annotation.as_ref(), semantic)
}
_ => false,
},
BindingKind::Argument => match binding.statement(semantic) {
// ```python
// def foo(x: annotation):
// ...
// ```
//
// We trust the annotation and see if the type checker matches the annotation.
Some(Stmt::FunctionDef(ast::StmtFunctionDef { parameters, .. })) => {
// TODO(charlie): Store a pointer to the argument in the binding.
let Some(parameter) = find_parameter_by_name(parameters.as_ref(), name) else {
return false;
};
let Some(ref annotation) = parameter.parameter.annotation else {
return false;
};
T::match_annotation(annotation.as_ref(), semantic)
}
_ => false,
},
BindingKind::Annotation => match binding.statement(semantic) {
// ```python
// x: annotation
// ```
//
// It's a typed declaration, type annotation is the only source of information.
Some(Stmt::AnnAssign(ast::StmtAnnAssign { annotation, .. })) => {
T::match_annotation(annotation.as_ref(), semantic)
}
_ => false,
},
_ => false,
}
}
/// Type checker for builtin types.
trait BuiltinTypeChecker {
/// Builtin type name.
const BUILTIN_TYPE_NAME: &'static str;
/// Type name as found in the `Typing` module.
const TYPING_NAME: &'static str;
/// [`PythonType`] associated with the intended type.
const EXPR_TYPE: PythonType;
/// Check annotation expression to match the intended type.
fn match_annotation(annotation: &Expr, semantic: &SemanticModel) -> bool {
let value = map_subscript(annotation);
Self::match_builtin_type(value, semantic)
|| semantic.match_typing_expr(value, Self::TYPING_NAME)
}
/// Check initializer expression to match the intended type.
fn match_initializer(initializer: &Expr, semantic: &SemanticModel) -> bool {
Self::match_expr_type(initializer) || Self::match_builtin_constructor(initializer, semantic)
}
/// Check if the type can be inferred from the given expression.
fn match_expr_type(initializer: &Expr) -> bool {
let init_type: ResolvedPythonType = initializer.into();
match init_type {
ResolvedPythonType::Atom(atom) => atom == Self::EXPR_TYPE,
_ => false,
}
}
/// Check if the given expression corresponds to a constructor call of the builtin type.
fn match_builtin_constructor(initializer: &Expr, semantic: &SemanticModel) -> bool {
let Expr::Call(ast::ExprCall { func, .. }) = initializer else {
return false;
};
Self::match_builtin_type(func.as_ref(), semantic)
}
/// Check if the given expression names the builtin type.
fn match_builtin_type(type_expr: &Expr, semantic: &SemanticModel) -> bool {
let Expr::Name(ast::ExprName { id, .. }) = type_expr else {
return false;
};
id == Self::BUILTIN_TYPE_NAME && semantic.is_builtin(Self::BUILTIN_TYPE_NAME)
}
}
impl<T: BuiltinTypeChecker> TypeChecker for T {
fn match_annotation(annotation: &Expr, semantic: &SemanticModel) -> bool {
<Self as BuiltinTypeChecker>::match_annotation(annotation, semantic)
}
fn match_initializer(initializer: &Expr, semantic: &SemanticModel) -> bool {
<Self as BuiltinTypeChecker>::match_initializer(initializer, semantic)
}
}
struct ListChecker;
impl BuiltinTypeChecker for ListChecker {
const BUILTIN_TYPE_NAME: &'static str = "list";
const TYPING_NAME: &'static str = "List";
const EXPR_TYPE: PythonType = PythonType::List;
}
struct DictChecker;
impl BuiltinTypeChecker for DictChecker {
const BUILTIN_TYPE_NAME: &'static str = "dict";
const TYPING_NAME: &'static str = "Dict";
const EXPR_TYPE: PythonType = PythonType::Dict;
}
/// Test whether the given binding (and the given name) can be considered a list.
/// For this, we check what value might be associated with it through it's initialization and
/// what annotation it has (we consider `list` and `typing.List`).
pub(super) fn is_list<'a>(binding: &'a Binding, name: &str, semantic: &'a SemanticModel) -> bool {
check_type::<ListChecker>(binding, name, semantic)
}
/// Test whether the given binding (and the given name) can be considered a dictionary.
/// For this, we check what value might be associated with it through it's initialization and
/// what annotation it has (we consider `dict` and `typing.Dict`).
pub(super) fn is_dict<'a>(binding: &'a Binding, name: &str, semantic: &'a SemanticModel) -> bool {
check_type::<DictChecker>(binding, name, semantic)
}
#[inline]
fn find_parameter_by_name<'a>(
parameters: &'a Parameters,
name: &'a str,
) -> Option<&'a ParameterWithDefault> {
find_parameter_by_name_impl(&parameters.args, name)
.or_else(|| find_parameter_by_name_impl(&parameters.posonlyargs, name))
.or_else(|| find_parameter_by_name_impl(&parameters.kwonlyargs, name))
}
#[inline]
fn find_parameter_by_name_impl<'a>(
parameters: &'a [ParameterWithDefault],
name: &'a str,
) -> Option<&'a ParameterWithDefault> {
parameters
.iter()
.find(|arg| arg.parameter.name.as_str() == name)
}

View file

@ -1,4 +1,6 @@
//! Rules from [refurb](https://pypi.org/project/refurb/)/
mod helpers;
pub(crate) mod rules;
#[cfg(test)]
@ -13,6 +15,7 @@ mod tests {
use crate::{assert_messages, settings};
#[test_case(Rule::RepeatedAppend, Path::new("FURB113.py"))]
#[test_case(Rule::DeleteFullSlice, Path::new("FURB131.py"))]
fn rules(rule_code: Rule, path: &Path) -> Result<()> {
let snapshot = format!("{}_{}", rule_code.noqa_code(), path.to_string_lossy());
let diagnostics = test_path(

View file

@ -0,0 +1,157 @@
use ruff_diagnostics::{AutofixKind, Diagnostic, Edit, Fix, Violation};
use ruff_macros::{derive_message_formats, violation};
use ruff_python_ast::{self as ast, Expr};
use ruff_python_codegen::Generator;
use ruff_python_semantic::{Binding, SemanticModel};
use ruff_text_size::{Ranged, TextRange};
use crate::checkers::ast::Checker;
use crate::registry::AsRule;
use crate::rules::refurb::helpers::{is_dict, is_list};
/// ## What it does
/// Checks for `del` statements that delete the entire slice of a list or
/// dictionary.
///
/// ## Why is this bad?
/// It's is faster and more succinct to remove all items via the `clear()`
/// method.
///
/// ## Example
/// ```python
/// names = {"key": "value"}
/// nums = [1, 2, 3]
///
/// del names[:]
/// del nums[:]
/// ```
///
/// Use instead:
/// ```python
/// names = {"key": "value"}
/// nums = [1, 2, 3]
///
/// names.clear()
/// nums.clear()
/// ```
///
/// ## References
/// - [Python documentation: Mutable Sequence Types](https://docs.python.org/3/library/stdtypes.html?highlight=list#mutable-sequence-types)
/// - [Python documentation: `dict.clear()`](https://docs.python.org/3/library/stdtypes.html?highlight=list#dict.clear)
#[violation]
pub struct DeleteFullSlice;
impl Violation for DeleteFullSlice {
const AUTOFIX: AutofixKind = AutofixKind::Sometimes;
#[derive_message_formats]
fn message(&self) -> String {
format!("Prefer `clear` over deleting a full slice")
}
fn autofix_title(&self) -> Option<String> {
Some("Replace with `clear()`".to_string())
}
}
/// FURB131
pub(crate) fn delete_full_slice(checker: &mut Checker, delete: &ast::StmtDelete) {
for target in &delete.targets {
let Some(name) = match_full_slice(target, checker.semantic()) else {
continue;
};
let mut diagnostic = Diagnostic::new(DeleteFullSlice, delete.range);
// Fix is only supported for single-target deletions.
if checker.patch(diagnostic.kind.rule()) && delete.targets.len() == 1 {
let replacement = make_suggestion(name, checker.generator());
diagnostic.set_fix(Fix::suggested(Edit::replacement(
replacement,
delete.start(),
delete.end(),
)));
}
checker.diagnostics.push(diagnostic);
}
}
/// Match `del expr[:]` where `expr` is a list or a dict.
fn match_full_slice<'a>(expr: &'a Expr, semantic: &SemanticModel) -> Option<&'a str> {
// Check that it is `del expr[...]`.
let subscript = expr.as_subscript_expr()?;
// Check that it is` `del expr[:]`.
if !matches!(
subscript.slice.as_ref(),
Expr::Slice(ast::ExprSlice {
lower: None,
upper: None,
step: None,
range: _,
})
) {
return None;
}
// Check that it is del var[:]
let ast::ExprName { id: name, .. } = subscript.value.as_name_expr()?;
// Let's find definition for var
let scope = semantic.current_scope();
let bindings: Vec<&Binding> = scope
.get_all(name)
.map(|binding_id| semantic.binding(binding_id))
.collect();
// NOTE: Maybe it is too strict of a limitation, but it seems reasonable.
let [binding] = bindings.as_slice() else {
return None;
};
// It should only apply to variables that are known to be lists or dicts.
if binding.source.is_none()
|| !(is_dict(binding, name, semantic) || is_list(binding, name, semantic))
{
return None;
}
// Name is needed for the fix suggestion.
Some(name)
}
/// Make fix suggestion for the given name, ie `name.clear()`.
fn make_suggestion(name: &str, generator: Generator) -> String {
// Here we construct `var.clear()`
//
// And start with construction of `var`
let var = ast::ExprName {
id: name.to_string(),
ctx: ast::ExprContext::Load,
range: TextRange::default(),
};
// Make `var.clear`.
let attr = ast::ExprAttribute {
value: Box::new(var.into()),
attr: ast::Identifier::new("clear".to_string(), TextRange::default()),
ctx: ast::ExprContext::Load,
range: TextRange::default(),
};
// Make it into a call `var.clear()`
let call = ast::ExprCall {
func: Box::new(attr.into()),
arguments: ast::Arguments {
args: vec![],
keywords: vec![],
range: TextRange::default(),
},
range: TextRange::default(),
};
// And finally, turn it into a statement.
let stmt = ast::StmtExpr {
value: Box::new(call.into()),
range: TextRange::default(),
};
generator.stmt(&stmt.into())
}

View file

@ -1,3 +1,6 @@
pub(crate) use delete_full_slice::*;
pub(crate) use repeated_append::*;
mod delete_full_slice;
mod repeated_append;

View file

@ -1,18 +1,17 @@
use rustc_hash::FxHashMap;
use ast::{traversal, ParameterWithDefault, Parameters};
use ast::traversal;
use ruff_diagnostics::{AutofixKind, Diagnostic, Edit, Fix, Violation};
use ruff_macros::{derive_message_formats, violation};
use ruff_python_ast::helpers::map_subscript;
use ruff_python_ast::{self as ast, Expr, Stmt};
use ruff_python_codegen::Generator;
use ruff_python_semantic::analyze::type_inference::{PythonType, ResolvedPythonType};
use ruff_python_semantic::{Binding, BindingId, BindingKind, DefinitionId, SemanticModel};
use ruff_python_semantic::{Binding, BindingId, DefinitionId, SemanticModel};
use ruff_text_size::{Ranged, TextRange};
use crate::autofix::snippet::SourceCodeSnippet;
use crate::checkers::ast::Checker;
use crate::registry::AsRule;
use crate::rules::refurb::helpers::is_list;
/// ## What it does
/// Checks for consecutive calls to `append`.
@ -255,6 +254,64 @@ fn get_or_add<'a, 'b>(
group
}
/// Matches that the given statement is a call to `append` on a list variable.
fn match_append<'a>(semantic: &'a SemanticModel, stmt: &'a Stmt) -> Option<Append<'a>> {
let Stmt::Expr(ast::StmtExpr { value, .. }) = stmt else {
return None;
};
let Expr::Call(ast::ExprCall {
func, arguments, ..
}) = value.as_ref()
else {
return None;
};
// `append` should have just one argument, an element to be added.
let [argument] = arguments.args.as_slice() else {
return None;
};
// The called function should be an attribute, ie `value.attr`.
let Expr::Attribute(ast::ExprAttribute { value, attr, .. }) = func.as_ref() else {
return None;
};
// `attr` should be `append` and it shouldn't have any keyword arguments.
if attr != "append" || !arguments.keywords.is_empty() {
return None;
}
// We match only variable references, i.e. `value` should be a name expression.
let Expr::Name(receiver @ ast::ExprName { id: name, .. }) = value.as_ref() else {
return None;
};
// Now we need to find what is this variable bound to...
let scope = semantic.current_scope();
let bindings: Vec<BindingId> = scope.get_all(name).collect();
// Maybe it is too strict of a limitation, but it seems reasonable.
let [binding_id] = bindings.as_slice() else {
return None;
};
let binding = semantic.binding(*binding_id);
// ...and whether this something is a list.
if binding.source.is_none() || !is_list(binding, name, semantic) {
return None;
}
Some(Append {
receiver,
binding_id: *binding_id,
binding,
stmt,
argument,
})
}
/// Make fix suggestion for the given group of appends.
fn make_suggestion(group: &AppendGroup, generator: Generator) -> String {
let appends = &group.appends;
@ -304,139 +361,3 @@ fn make_suggestion(group: &AppendGroup, generator: Generator) -> String {
};
generator.stmt(&stmt.into())
}
/// Matches that the given statement is a call to `append` on a list variable.
fn match_append<'a>(semantic: &'a SemanticModel, stmt: &'a Stmt) -> Option<Append<'a>> {
let Stmt::Expr(ast::StmtExpr { value, .. }) = stmt else {
return None;
};
let Expr::Call(ast::ExprCall {
func, arguments, ..
}) = value.as_ref()
else {
return None;
};
// `append` should have just one argument, an element to be added.
let [argument] = arguments.args.as_slice() else {
return None;
};
// The called function should be an attribute, ie `value.attr`.
let Expr::Attribute(ast::ExprAttribute { value, attr, .. }) = func.as_ref() else {
return None;
};
// `attr` should be `append` and it shouldn't have any keyword arguments.
if attr != "append" || !arguments.keywords.is_empty() {
return None;
}
// We match only variable references, i.e. `value` should be a name expression.
let Expr::Name(receiver @ ast::ExprName { id: name, .. }) = value.as_ref() else {
return None;
};
// Now we need to find what is this variable bound to...
let scope = semantic.current_scope();
let bindings: Vec<BindingId> = scope.get_all(name).collect();
// Maybe it is too strict of a limitation, but it seems reasonable.
let [binding_id] = bindings.as_slice() else {
return None;
};
let binding = semantic.binding(*binding_id);
// ...and whether this something is a list.
if binding.source.is_none() || !is_list(semantic, binding, name) {
return None;
}
Some(Append {
receiver,
binding_id: *binding_id,
binding,
stmt,
argument,
})
}
/// Test whether the given binding (and the given name) can be considered a list.
/// For this, we check what value might be associated with it through it's initialization and
/// what annotation it has (we consider `list` and `typing.List`).
///
/// NOTE: this function doesn't perform more serious type inference, so it won't be able
/// to understand if the value gets initialized from a call to a function always returning
/// lists. This also implies no interfile analysis.
fn is_list<'a>(semantic: &'a SemanticModel, binding: &'a Binding, name: &str) -> bool {
match binding.kind {
BindingKind::Assignment => match binding.statement(semantic) {
Some(Stmt::Assign(ast::StmtAssign { value, .. })) => {
let value_type: ResolvedPythonType = value.as_ref().into();
let ResolvedPythonType::Atom(candidate) = value_type else {
return false;
};
matches!(candidate, PythonType::List)
}
Some(Stmt::AnnAssign(ast::StmtAnnAssign { annotation, .. })) => {
is_list_annotation(semantic, annotation.as_ref())
}
_ => false,
},
BindingKind::Argument => match binding.statement(semantic) {
Some(Stmt::FunctionDef(ast::StmtFunctionDef { parameters, .. })) => {
let Some(parameter) = find_parameter_by_name(parameters.as_ref(), name) else {
return false;
};
let Some(ref annotation) = parameter.parameter.annotation else {
return false;
};
is_list_annotation(semantic, annotation.as_ref())
}
_ => false,
},
BindingKind::Annotation => match binding.statement(semantic) {
Some(Stmt::AnnAssign(ast::StmtAnnAssign { annotation, .. })) => {
is_list_annotation(semantic, annotation.as_ref())
}
_ => false,
},
_ => false,
}
}
#[inline]
fn is_list_annotation(semantic: &SemanticModel, annotation: &Expr) -> bool {
let value = map_subscript(annotation);
match_builtin_list_type(semantic, value) || semantic.match_typing_expr(value, "List")
}
#[inline]
fn match_builtin_list_type(semantic: &SemanticModel, type_expr: &Expr) -> bool {
let Expr::Name(ast::ExprName { id, .. }) = type_expr else {
return false;
};
id == "list" && semantic.is_builtin("list")
}
#[inline]
fn find_parameter_by_name<'a>(
parameters: &'a Parameters,
name: &'a str,
) -> Option<&'a ParameterWithDefault> {
find_parameter_by_name_impl(&parameters.args, name)
.or_else(|| find_parameter_by_name_impl(&parameters.posonlyargs, name))
.or_else(|| find_parameter_by_name_impl(&parameters.kwonlyargs, name))
}
#[inline]
fn find_parameter_by_name_impl<'a>(
parameters: &'a [ParameterWithDefault],
name: &'a str,
) -> Option<&'a ParameterWithDefault> {
parameters
.iter()
.find(|arg| arg.parameter.name.as_str() == name)
}

View file

@ -0,0 +1,132 @@
---
source: crates/ruff/src/rules/refurb/mod.rs
---
FURB131.py:11:1: FURB131 [*] Prefer `clear` over deleting a full slice
|
10 | # FURB131
11 | del nums[:]
| ^^^^^^^^^^^ FURB131
|
= help: Replace with `clear()`
Suggested fix
8 8 | # these should match
9 9 |
10 10 | # FURB131
11 |-del nums[:]
11 |+nums.clear()
12 12 |
13 13 |
14 14 | # FURB131
FURB131.py:15:1: FURB131 [*] Prefer `clear` over deleting a full slice
|
14 | # FURB131
15 | del names[:]
| ^^^^^^^^^^^^ FURB131
|
= help: Replace with `clear()`
Suggested fix
12 12 |
13 13 |
14 14 | # FURB131
15 |-del names[:]
15 |+names.clear()
16 16 |
17 17 |
18 18 | # FURB131
FURB131.py:19:1: FURB131 Prefer `clear` over deleting a full slice
|
18 | # FURB131
19 | del x, nums[:]
| ^^^^^^^^^^^^^^ FURB131
|
= help: Replace with `clear()`
FURB131.py:23:1: FURB131 Prefer `clear` over deleting a full slice
|
22 | # FURB131
23 | del y, names[:], x
| ^^^^^^^^^^^^^^^^^^ FURB131
|
= help: Replace with `clear()`
FURB131.py:28:5: FURB131 [*] Prefer `clear` over deleting a full slice
|
26 | def yes_one(x: list[int]):
27 | # FURB131
28 | del x[:]
| ^^^^^^^^ FURB131
|
= help: Replace with `clear()`
Suggested fix
25 25 |
26 26 | def yes_one(x: list[int]):
27 27 | # FURB131
28 |- del x[:]
28 |+ x.clear()
29 29 |
30 30 |
31 31 | def yes_two(x: dict[int, str]):
FURB131.py:33:5: FURB131 [*] Prefer `clear` over deleting a full slice
|
31 | def yes_two(x: dict[int, str]):
32 | # FURB131
33 | del x[:]
| ^^^^^^^^ FURB131
|
= help: Replace with `clear()`
Suggested fix
30 30 |
31 31 | def yes_two(x: dict[int, str]):
32 32 | # FURB131
33 |- del x[:]
33 |+ x.clear()
34 34 |
35 35 |
36 36 | def yes_three(x: List[int]):
FURB131.py:38:5: FURB131 [*] Prefer `clear` over deleting a full slice
|
36 | def yes_three(x: List[int]):
37 | # FURB131
38 | del x[:]
| ^^^^^^^^ FURB131
|
= help: Replace with `clear()`
Suggested fix
35 35 |
36 36 | def yes_three(x: List[int]):
37 37 | # FURB131
38 |- del x[:]
38 |+ x.clear()
39 39 |
40 40 |
41 41 | def yes_four(x: Dict[int, str]):
FURB131.py:43:5: FURB131 [*] Prefer `clear` over deleting a full slice
|
41 | def yes_four(x: Dict[int, str]):
42 | # FURB131
43 | del x[:]
| ^^^^^^^^ FURB131
|
= help: Replace with `clear()`
Suggested fix
40 40 |
41 41 | def yes_four(x: Dict[int, str]):
42 42 | # FURB131
43 |- del x[:]
43 |+ x.clear()
44 44 |
45 45 |
46 46 | # these should not