[ty] Filter overloads based on Any / Unknown (#18607)

## Summary

Closes: astral-sh/ty#552

This PR adds support for step 5 of the overload call evaluation
algorithm which specifies:

> For all arguments, determine whether all possible materializations of
the argument’s type are
> assignable to the corresponding parameter type for each of the
remaining overloads. If so,
> eliminate all of the subsequent remaining overloads.

The algorithm works in two parts:

1. Find out the participating parameter indexes. These are the
parameters that aren't gradual equivalent to one or more parameter types
at the same index in other overloads.
2. Loop over each overload and check whether that would be the _final_
overload for the argument types i.e., the remaining overloads will never
be matched against these argument types

For step 1, the participating parameter indexes are computed by just
comparing whether all the parameter types at the corresponding index for
all the overloads are **gradual equivalent**.

The step 2 of the algorithm used is described in [this
comment](https://github.com/astral-sh/ty/issues/552#issuecomment-2969165421).

## Test Plan

Update the overload call tests.
This commit is contained in:
Dhruv Manilawala 2025-06-17 15:35:09 +05:30 committed by GitHub
parent 1d458d4314
commit c7e020df6b
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 700 additions and 45 deletions

View file

@ -399,3 +399,475 @@ def _(x: SomeEnum):
# TODO: This should be `A | B | C` once enums are supported and are expanded
reveal_type(f(x)) # revealed: A
```
## Filtering overloads with variadic arguments and parameters
TODO
## Filtering based on `Any` / `Unknown`
This is the step 5 of the overload call evaluation algorithm which specifies that:
> For all arguments, determine whether all possible materializations of the arguments type are
> assignable to the corresponding parameter type for each of the remaining overloads. If so,
> eliminate all of the subsequent remaining overloads.
This is only performed if the previous step resulted in more than one matching overload.
### Single list argument
`overloaded.pyi`:
```pyi
from typing import Any, overload
@overload
def f(x: list[int]) -> int: ...
@overload
def f(x: list[Any]) -> int: ...
@overload
def f(x: Any) -> str: ...
```
For the above definition, anything other than `list` should match the last overload:
```py
from typing import Any
from overloaded import f
# Anything other than `list` should match the last overload
reveal_type(f(1)) # revealed: str
def _(list_int: list[int], list_any: list[Any]):
reveal_type(f(list_int)) # revealed: int
reveal_type(f(list_any)) # revealed: int
```
### Single list argument (ambiguous)
The overload definition is the same as above, but the return type of the second overload is changed
to `str` to make the overload matching ambiguous if the argument is a `list[Any]`.
`overloaded.pyi`:
```pyi
from typing import Any, overload
@overload
def f(x: list[int]) -> int: ...
@overload
def f(x: list[Any]) -> str: ...
@overload
def f(x: Any) -> str: ...
```
```py
from typing import Any
from overloaded import f
# Anything other than `list` should match the last overload
reveal_type(f(1)) # revealed: str
def _(list_int: list[int], list_any: list[Any]):
# All materializations of `list[int]` are assignable to `list[int]`, so it matches the first
# overload.
reveal_type(f(list_int)) # revealed: int
# All materializations of `list[Any]` are assignable to `list[int]` and `list[Any]`, but the
# return type of first and second overloads are not equivalent, so the overload matching
# is ambiguous.
reveal_type(f(list_any)) # revealed: Unknown
```
### Single tuple argument
`overloaded.pyi`:
```pyi
from typing import Any, overload
@overload
def f(x: tuple[int, str]) -> int: ...
@overload
def f(x: tuple[int, Any]) -> int: ...
@overload
def f(x: Any) -> str: ...
```
```py
from typing import Any
from overloaded import f
reveal_type(f("a")) # revealed: str
reveal_type(f((1, "b"))) # revealed: int
reveal_type(f((1, 2))) # revealed: int
def _(int_str: tuple[int, str], int_any: tuple[int, Any], any_any: tuple[Any, Any]):
# All materializations are assignable to first overload, so second and third overloads are
# eliminated
reveal_type(f(int_str)) # revealed: int
# All materializations are assignable to second overload, so the third overload is eliminated;
# the return type of first and second overload is equivalent
reveal_type(f(int_any)) # revealed: int
# All materializations of `tuple[Any, Any]` are assignable to the parameters of all the
# overloads, but the return types aren't equivalent, so the overload matching is ambiguous
reveal_type(f(any_any)) # revealed: Unknown
```
### Multiple arguments
`overloaded.pyi`:
```pyi
from typing import Any, overload
class A: ...
class B: ...
@overload
def f(x: list[int], y: tuple[int, str]) -> A: ...
@overload
def f(x: list[Any], y: tuple[int, Any]) -> A: ...
@overload
def f(x: list[Any], y: tuple[Any, Any]) -> B: ...
```
```py
from typing import Any
from overloaded import A, f
def _(list_int: list[int], list_any: list[Any], int_str: tuple[int, str], int_any: tuple[int, Any], any_any: tuple[Any, Any]):
# All materializations of both argument types are assignable to the first overload, so the
# second and third overloads are filtered out
reveal_type(f(list_int, int_str)) # revealed: A
# All materialization of first argument is assignable to first overload and for the second
# argument, they're assignable to the second overload, so the third overload is filtered out
reveal_type(f(list_int, int_any)) # revealed: A
# All materialization of first argument is assignable to second overload and for the second
# argument, they're assignable to the first overload, so the third overload is filtered out
reveal_type(f(list_any, int_str)) # revealed: A
# All materializations of both arguments are assignable to the second overload, so the third
# overload is filtered out
reveal_type(f(list_any, int_any)) # revealed: A
# All materializations of first argument is assignable to the second overload and for the second
# argument, they're assignable to the third overload, so no overloads are filtered out; the
# return types of the remaining overloads are not equivalent, so overload matching is ambiguous
reveal_type(f(list_int, any_any)) # revealed: Unknown
```
### `LiteralString` and `str`
`overloaded.pyi`:
```pyi
from typing import overload
from typing_extensions import LiteralString
@overload
def f(x: LiteralString) -> LiteralString: ...
@overload
def f(x: str) -> str: ...
```
```py
from typing import Any
from typing_extensions import LiteralString
from overloaded import f
def _(literal: LiteralString, string: str, any: Any):
reveal_type(f(literal)) # revealed: LiteralString
reveal_type(f(string)) # revealed: str
# `Any` matches both overloads, but the return types are not equivalent.
# Pyright and mypy both reveal `str` here, contrary to the spec.
reveal_type(f(any)) # revealed: Unknown
```
### Generics
`overloaded.pyi`:
```pyi
from typing import Any, TypeVar, overload
_T = TypeVar("_T")
class A: ...
class B: ...
@overload
def f(x: list[int]) -> A: ...
@overload
def f(x: list[_T]) -> _T: ...
@overload
def f(x: Any) -> B: ...
```
```py
from typing import Any
from overloaded import f
def _(list_int: list[int], list_str: list[str], list_any: list[Any], any: Any):
reveal_type(f(list_int)) # revealed: A
# TODO: Should be `str`
reveal_type(f(list_str)) # revealed: Unknown
reveal_type(f(list_any)) # revealed: Unknown
reveal_type(f(any)) # revealed: Unknown
```
### Generics (multiple arguments)
`overloaded.pyi`:
```pyi
from typing import Any, TypeVar, overload
_T = TypeVar("_T")
@overload
def f(x: int, y: Any) -> int: ...
@overload
def f(x: str, y: _T) -> _T: ...
```
```py
from typing import Any
from overloaded import f
def _(integer: int, string: str, any: Any, list_any: list[Any]):
reveal_type(f(integer, string)) # revealed: int
reveal_type(f(string, integer)) # revealed: int
# This matches the second overload and is _not_ the case of ambiguous overload matching.
reveal_type(f(string, any)) # revealed: Any
reveal_type(f(string, list_any)) # revealed: list[Any]
```
### Generic `self`
`overloaded.pyi`:
```pyi
from typing import Any, overload, TypeVar, Generic
_T = TypeVar("_T")
class A(Generic[_T]):
@overload
def method(self: "A[int]") -> int: ...
@overload
def method(self: "A[Any]") -> int: ...
class B(Generic[_T]):
@overload
def method(self: "B[int]") -> int: ...
@overload
def method(self: "B[Any]") -> str: ...
```
```py
from typing import Any
from overloaded import A, B
def _(a_int: A[int], a_str: A[str], a_any: A[Any]):
reveal_type(a_int.method()) # revealed: int
reveal_type(a_str.method()) # revealed: int
reveal_type(a_any.method()) # revealed: int
def _(b_int: B[int], b_str: B[str], b_any: B[Any]):
reveal_type(b_int.method()) # revealed: int
reveal_type(b_str.method()) # revealed: str
reveal_type(b_any.method()) # revealed: Unknown
```
### Variadic argument
TODO: A variadic parameter is being assigned to a number of parameters of the same type
### Non-participating fully-static parameter
Ref: <https://github.com/astral-sh/ty/issues/552#issuecomment-2969052173>
A non-participating parameter would be the one where the set of materializations of the argument
type, that are assignable to the parameter type at the same index, is same for the overloads for
which step 5 needs to be performed.
`overloaded.pyi`:
```pyi
from typing import Literal, overload
@overload
def f(x: str, *, flag: Literal[True]) -> int: ...
@overload
def f(x: str, *, flag: Literal[False] = ...) -> str: ...
@overload
def f(x: str, *, flag: bool = ...) -> int | str: ...
```
In the following example, for the `f(any, flag=True)` call, the materializations of first argument
type `Any` that are assignable to `str` is same for overloads 1 and 3 (at the time of step 5), so
for the purposes of overload matching that parameter can be ignored. If `Any` materializes to
anything that's not assignable to `str`, all of the overloads would already be filtered out which
will raise a `no-matching-overload` error.
```py
from typing import Any
from overloaded import f
def _(any: Any):
reveal_type(f(any, flag=True)) # revealed: int
reveal_type(f(any, flag=False)) # revealed: str
```
### Non-participating gradual parameter
`overloaded.pyi`:
```pyi
from typing import Any, Literal, overload
@overload
def f(x: tuple[str, Any], *, flag: Literal[True]) -> int: ...
@overload
def f(x: tuple[str, Any], *, flag: Literal[False] = ...) -> str: ...
@overload
def f(x: tuple[str, Any], *, flag: bool = ...) -> int | str: ...
```
```py
from typing import Any
from overloaded import f
def _(any: Any):
reveal_type(f(any, flag=True)) # revealed: int
reveal_type(f(any, flag=False)) # revealed: str
```
### Argument type expansion
This filtering can also happen for each of the expanded argument lists.
#### No ambiguity
`overloaded.pyi`:
```pyi
from typing import Any, overload
class A: ...
class B: ...
@overload
def f(x: tuple[A, B]) -> A: ...
@overload
def f(x: tuple[B, A]) -> B: ...
@overload
def f(x: tuple[A, Any]) -> A: ...
@overload
def f(x: tuple[B, Any]) -> B: ...
```
Here, the argument `tuple[A | B, Any]` doesn't match any of the overloads, so we perform argument
type expansion which results in two argument lists:
1. `tuple[A, Any]`
1. `tuple[B, Any]`
The first argument list matches overload 1 and 3 via `Any` materialization for which the return
types are equivalent (`A`). Similarly, the second argument list matches overload 2 and 4 via `Any`
materialization for which the return types are equivalent (`B`). The final return type for the call
will be the union of the return types.
```py
from typing import Any
from overloaded import A, B, f
def _(arg: tuple[A | B, Any]):
reveal_type(f(arg)) # revealed: A | B
```
#### One argument list ambiguous
The example used here is same as the previous one, but the return type of the last overload is
changed so that it's not equivalent to the return type of the second overload, creating an ambiguous
matching for the second argument list.
`overloaded.pyi`:
```pyi
from typing import Any, overload
class A: ...
class B: ...
class C: ...
@overload
def f(x: tuple[A, B]) -> A: ...
@overload
def f(x: tuple[B, A]) -> B: ...
@overload
def f(x: tuple[A, Any]) -> A: ...
@overload
def f(x: tuple[B, Any]) -> C: ...
```
```py
from typing import Any
from overloaded import A, B, C, f
def _(arg: tuple[A | B, Any]):
reveal_type(f(arg)) # revealed: A | Unknown
```
#### Both argument lists ambiguous
Here, both argument lists created by expanding the argument type are ambiguous, so the final return
type is `Any`.
`overloaded.pyi`:
```pyi
from typing import Any, overload
class A: ...
class B: ...
class C: ...
@overload
def f(x: tuple[A, B]) -> A: ...
@overload
def f(x: tuple[B, A]) -> B: ...
@overload
def f(x: tuple[A, Any]) -> C: ...
@overload
def f(x: tuple[B, Any]) -> C: ...
```
```py
from typing import Any
from overloaded import A, B, C, f
def _(arg: tuple[A | B, Any]):
reveal_type(f(arg)) # revealed: Unknown
```

View file

@ -5834,9 +5834,9 @@ impl<'db> KnownInstanceType<'db> {
#[derive(Copy, Clone, Debug, Eq, Hash, PartialEq)]
pub enum DynamicType {
// An explicitly annotated `typing.Any`
/// An explicitly annotated `typing.Any`
Any,
// An unannotated value, or a dynamic type resulting from an error
/// An unannotated value, or a dynamic type resulting from an error
Unknown,
/// Temporary type for symbols that can't be inferred yet because of missing implementations.
///

View file

@ -3,6 +3,8 @@
//! [signatures][crate::types::signatures], we have to handle the fact that the callable might be a
//! union of types, each of which might contain multiple overloads.
use std::collections::HashSet;
use itertools::Itertools;
use ruff_db::parsed::parsed_module;
use smallvec::{SmallVec, smallvec};
@ -1029,7 +1031,7 @@ impl<'db> From<Binding<'db>> for Bindings<'db> {
signature_type,
dunder_call_is_possibly_unbound: false,
bound_type: None,
return_type: None,
overload_call_return_type: None,
overloads: smallvec![from],
};
Bindings {
@ -1068,13 +1070,21 @@ pub(crate) struct CallableBinding<'db> {
/// The type of the bound `self` or `cls` parameter if this signature is for a bound method.
pub(crate) bound_type: Option<Type<'db>>,
/// The return type of this callable.
/// The return type of this overloaded callable.
///
/// This is only `Some` if it's an overloaded callable, "argument type expansion" was
/// performed, and one of the expansion evaluated successfully for all of the argument lists.
/// This type is then the union of all the return types of the matched overloads for the
/// expanded argument lists.
return_type: Option<Type<'db>>,
/// This is [`Some`] only in the following cases:
/// 1. Argument type expansion was performed and one of the expansions evaluated successfully
/// for all of the argument lists, or
/// 2. Overload call evaluation was ambiguous, meaning that multiple overloads matched the
/// argument lists, but they all had different return types
///
/// For (1), the final return type is the union of all the return types of the matched
/// overloads for the expanded argument lists.
///
/// For (2), the final return type is [`Unknown`].
///
/// [`Unknown`]: crate::types::DynamicType::Unknown
overload_call_return_type: Option<OverloadCallReturnType<'db>>,
/// The bindings of each overload of this callable. Will be empty if the type is not callable.
///
@ -1097,7 +1107,7 @@ impl<'db> CallableBinding<'db> {
signature_type,
dunder_call_is_possibly_unbound: false,
bound_type: None,
return_type: None,
overload_call_return_type: None,
overloads,
}
}
@ -1108,7 +1118,7 @@ impl<'db> CallableBinding<'db> {
signature_type,
dunder_call_is_possibly_unbound: false,
bound_type: None,
return_type: None,
overload_call_return_type: None,
overloads: smallvec![],
}
}
@ -1176,7 +1186,7 @@ impl<'db> CallableBinding<'db> {
}
};
let snapshotter = MatchingOverloadsSnapshotter::new(matching_overload_indexes);
let snapshotter = CallableBindingSnapshotter::new(matching_overload_indexes);
// State of the bindings _before_ evaluating (type checking) the matching overloads using
// the non-expanded argument types.
@ -1196,9 +1206,13 @@ impl<'db> CallableBinding<'db> {
// If only one overload evaluates without error, it is the winning match.
return;
}
MatchingOverloadIndex::Multiple(_) => {
MatchingOverloadIndex::Multiple(indexes) => {
// If two or more candidate overloads remain, proceed to step 4.
// TODO: Step 4 and Step 5 goes here...
// TODO: Step 4
// Step 5
self.filter_overloads_using_any_or_unknown(db, argument_types.types(), &indexes);
// We're returning here because this shouldn't lead to argument type expansion.
return;
}
@ -1225,7 +1239,7 @@ impl<'db> CallableBinding<'db> {
// This is the merged state of the bindings after evaluating all of the expanded
// argument lists. This will be the final state to restore the bindings to if all of
// the expanded argument lists evaluated successfully.
let mut merged_evaluation_state: Option<MatchingOverloadsSnapshot<'db>> = None;
let mut merged_evaluation_state: Option<CallableBindingSnapshot<'db>> = None;
let mut return_types = Vec::new();
@ -1241,10 +1255,16 @@ impl<'db> CallableBinding<'db> {
MatchingOverloadIndex::Single(index) => {
Some(self.overloads[index].return_type())
}
MatchingOverloadIndex::Multiple(index) => {
// TODO: Step 4 and Step 5 goes here... but for now we just use the return
// type of the first matched overload.
Some(self.overloads[index[0]].return_type())
MatchingOverloadIndex::Multiple(matching_overload_indexes) => {
// TODO: Step 4
self.filter_overloads_using_any_or_unknown(
db,
expanded_argument_types,
&matching_overload_indexes,
);
Some(self.return_type())
}
};
@ -1274,17 +1294,23 @@ impl<'db> CallableBinding<'db> {
}
if return_types.len() == expanded_argument_lists.len() {
// If the number of return types is equal to the number of expanded argument lists,
// they all evaluated successfully. So, we need to combine their return types by
// union to determine the final return type.
self.return_type = Some(UnionType::from_elements(db, return_types));
// Restore the bindings state to the one that merges the bindings state evaluating
// each of the expanded argument list.
//
// Note that this needs to happen *before* setting the return type, because this
// will restore the return type to the one before argument type expansion.
if let Some(merged_evaluation_state) = merged_evaluation_state {
snapshotter.restore(self, merged_evaluation_state);
}
// If the number of return types is equal to the number of expanded argument lists,
// they all evaluated successfully. So, we need to combine their return types by
// union to determine the final return type.
self.overload_call_return_type =
Some(OverloadCallReturnType::ArgumentTypeExpansion(
UnionType::from_elements(db, return_types),
));
return;
}
}
@ -1296,6 +1322,137 @@ impl<'db> CallableBinding<'db> {
snapshotter.restore(self, post_evaluation_snapshot);
}
/// Filter overloads based on [`Any`] or [`Unknown`] argument types.
///
/// This is the step 5 of the [overload call evaluation algorithm][1].
///
/// The filtering works on the remaining overloads that are present at the
/// `matching_overload_indexes` and are filtered out by marking them as unmatched overloads
/// using the [`mark_as_unmatched_overload`] method.
///
/// [`Any`]: crate::types::DynamicType::Any
/// [`Unknown`]: crate::types::DynamicType::Unknown
/// [`mark_as_unmatched_overload`]: Binding::mark_as_unmatched_overload
/// [1]: https://typing.python.org/en/latest/spec/overload.html#overload-call-evaluation
fn filter_overloads_using_any_or_unknown(
&mut self,
db: &'db dyn Db,
argument_types: &[Type<'db>],
matching_overload_indexes: &[usize],
) {
// These are the parameter indexes that matches the arguments that participate in the
// filtering process.
//
// The parameter types at these indexes have at least one overload where the type isn't
// gradual equivalent to the parameter types at the same index for other overloads.
let mut participating_parameter_indexes = HashSet::new();
// These only contain the top materialized argument types for the corresponding
// participating parameter indexes.
let mut top_materialized_argument_types = vec![];
for (argument_index, argument_type) in argument_types.iter().enumerate() {
let mut first_parameter_type: Option<Type<'db>> = None;
let mut participating_parameter_index = None;
for overload_index in matching_overload_indexes {
let overload = &self.overloads[*overload_index];
let Some(parameter_index) = overload.argument_parameters[argument_index] else {
// There is no parameter for this argument in this overload.
break;
};
// TODO: For an unannotated `self` / `cls` parameter, the type should be
// `typing.Self` / `type[typing.Self]`
let current_parameter_type = overload.signature.parameters()[parameter_index]
.annotated_type()
.unwrap_or(Type::unknown());
if let Some(first_parameter_type) = first_parameter_type {
if !first_parameter_type.is_gradual_equivalent_to(db, current_parameter_type) {
participating_parameter_index = Some(parameter_index);
break;
}
} else {
first_parameter_type = Some(current_parameter_type);
}
}
if let Some(parameter_index) = participating_parameter_index {
participating_parameter_indexes.insert(parameter_index);
top_materialized_argument_types.push(argument_type.top_materialization(db));
}
}
let top_materialized_argument_type =
TupleType::from_elements(db, top_materialized_argument_types);
// A flag to indicate whether we've found the overload that makes the remaining overloads
// unmatched for the given argument types.
let mut filter_remaining_overloads = false;
for (upto, current_index) in matching_overload_indexes.iter().enumerate() {
if filter_remaining_overloads {
self.overloads[*current_index].mark_as_unmatched_overload();
continue;
}
let mut parameter_types = Vec::with_capacity(argument_types.len());
for argument_index in 0..argument_types.len() {
// The parameter types at the current argument index.
let mut current_parameter_types = vec![];
for overload_index in &matching_overload_indexes[..=upto] {
let overload = &self.overloads[*overload_index];
let Some(parameter_index) = overload.argument_parameters[argument_index] else {
// There is no parameter for this argument in this overload.
continue;
};
if !participating_parameter_indexes.contains(&parameter_index) {
// This parameter doesn't participate in the filtering process.
continue;
}
// TODO: For an unannotated `self` / `cls` parameter, the type should be
// `typing.Self` / `type[typing.Self]`
let parameter_type = overload.signature.parameters()[parameter_index]
.annotated_type()
.unwrap_or(Type::unknown());
current_parameter_types.push(parameter_type);
}
if current_parameter_types.is_empty() {
continue;
}
parameter_types.push(UnionType::from_elements(db, current_parameter_types));
}
if top_materialized_argument_type
.is_assignable_to(db, TupleType::from_elements(db, parameter_types))
{
filter_remaining_overloads = true;
}
}
// Once this filtering process is applied for all arguments, examine the return types of
// the remaining overloads. If the resulting return types for all remaining overloads are
// equivalent, proceed to step 6.
let are_return_types_equivalent_for_all_matching_overloads = {
let mut matching_overloads = self.matching_overloads();
if let Some(first_overload_return_type) = matching_overloads
.next()
.map(|(_, overload)| overload.return_type())
{
matching_overloads.all(|(_, overload)| {
overload
.return_type()
.is_equivalent_to(db, first_overload_return_type)
})
} else {
// No matching overload
true
}
};
if !are_return_types_equivalent_for_all_matching_overloads {
// Overload matching is ambiguous.
self.overload_call_return_type = Some(OverloadCallReturnType::Ambiguous);
}
}
fn as_result(&self) -> Result<(), CallErrorKind> {
if !self.is_callable() {
return Err(CallErrorKind::NotCallable);
@ -1370,8 +1527,11 @@ impl<'db> CallableBinding<'db> {
/// For an invalid call to an overloaded function, we return `Type::unknown`, since we cannot
/// make any useful conclusions about which overload was intended to be called.
pub(crate) fn return_type(&self) -> Type<'db> {
if let Some(return_type) = self.return_type {
return return_type;
if let Some(overload_call_return_type) = self.overload_call_return_type {
return match overload_call_return_type {
OverloadCallReturnType::ArgumentTypeExpansion(return_type) => return_type,
OverloadCallReturnType::Ambiguous => Type::unknown(),
};
}
if let Some((_, first_overload)) = self.matching_overloads().next() {
return first_overload.return_type();
@ -1521,6 +1681,12 @@ impl<'a, 'db> IntoIterator for &'a CallableBinding<'db> {
}
}
#[derive(Debug, Copy, Clone)]
enum OverloadCallReturnType<'db> {
ArgumentTypeExpansion(Type<'db>),
Ambiguous,
}
#[derive(Debug)]
enum MatchingOverloadIndex {
/// No matching overloads found.
@ -1855,6 +2021,11 @@ impl<'db> Binding<'db> {
.map(|(arg_and_type, _)| arg_and_type)
}
/// Mark this overload binding as an unmatched overload.
fn mark_as_unmatched_overload(&mut self) {
self.errors.push(BindingError::UnmatchedOverload);
}
fn report_diagnostics(
&self,
context: &InferContext<'db, '_>,
@ -1915,23 +2086,27 @@ struct BindingSnapshot<'db> {
errors: Vec<BindingError<'db>>,
}
/// Represents the snapshot of the matched overload bindings.
///
/// The reason that this only contains the matched overloads are:
/// 1. Avoid creating snapshots for the overloads that have been filtered by the arity check
/// 2. Avoid duplicating errors when merging the snapshots on a successful evaluation of all the
/// expanded argument lists
#[derive(Clone, Debug)]
struct MatchingOverloadsSnapshot<'db>(Vec<(usize, BindingSnapshot<'db>)>);
struct CallableBindingSnapshot<'db> {
overload_return_type: Option<OverloadCallReturnType<'db>>,
impl<'db> MatchingOverloadsSnapshot<'db> {
/// Represents the snapshot of the matched overload bindings.
///
/// The reason that this only contains the matched overloads are:
/// 1. Avoid creating snapshots for the overloads that have been filtered by the arity check
/// 2. Avoid duplicating errors when merging the snapshots on a successful evaluation of all
/// the expanded argument lists
matching_overloads: Vec<(usize, BindingSnapshot<'db>)>,
}
impl<'db> CallableBindingSnapshot<'db> {
/// Update the state of the matched overload bindings in this snapshot with the current
/// state in the given `binding`.
fn update(&mut self, binding: &CallableBinding<'db>) {
// Here, the `snapshot` is the state of this binding for the previous argument list and
// `binding` would contain the state after evaluating the current argument list.
for (snapshot, binding) in self
.0
.matching_overloads
.iter_mut()
.map(|(index, snapshot)| (snapshot, &binding.overloads[*index]))
{
@ -1967,13 +2142,13 @@ impl<'db> MatchingOverloadsSnapshot<'db> {
/// A helper to take snapshots of the matched overload bindings for the current state of the
/// bindings.
struct MatchingOverloadsSnapshotter(Vec<usize>);
struct CallableBindingSnapshotter(Vec<usize>);
impl MatchingOverloadsSnapshotter {
impl CallableBindingSnapshotter {
/// Creates a new snapshotter for the given indexes of the matched overloads.
fn new(indexes: Vec<usize>) -> Self {
debug_assert!(indexes.len() > 1);
MatchingOverloadsSnapshotter(indexes)
CallableBindingSnapshotter(indexes)
}
/// Takes a snapshot of the current state of the matched overload bindings.
@ -1981,23 +2156,26 @@ impl MatchingOverloadsSnapshotter {
/// # Panics
///
/// Panics if the indexes of the matched overloads are not valid for the given binding.
fn take<'db>(&self, binding: &CallableBinding<'db>) -> MatchingOverloadsSnapshot<'db> {
MatchingOverloadsSnapshot(
self.0
fn take<'db>(&self, binding: &CallableBinding<'db>) -> CallableBindingSnapshot<'db> {
CallableBindingSnapshot {
overload_return_type: binding.overload_call_return_type,
matching_overloads: self
.0
.iter()
.map(|index| (*index, binding.overloads[*index].snapshot()))
.collect(),
)
}
}
/// Restores the state of the matched overload bindings from the given snapshot.
fn restore<'db>(
&self,
binding: &mut CallableBinding<'db>,
snapshot: MatchingOverloadsSnapshot<'db>,
snapshot: CallableBindingSnapshot<'db>,
) {
debug_assert_eq!(self.0.len(), snapshot.0.len());
for (index, snapshot) in snapshot.0 {
debug_assert_eq!(self.0.len(), snapshot.matching_overloads.len());
binding.overload_call_return_type = snapshot.overload_return_type;
for (index, snapshot) in snapshot.matching_overloads {
binding.overloads[index].restore(snapshot);
}
}
@ -2140,6 +2318,9 @@ pub(crate) enum BindingError<'db> {
/// We use this variant to report errors in `property.__get__` and `property.__set__`, which
/// can occur when the call to the underlying getter/setter fails.
InternalCallError(&'static str),
/// This overload binding of the callable does not match the arguments.
// TODO: We could expand this with an enum to specify why the overload is unmatched.
UnmatchedOverload,
}
impl<'db> BindingError<'db> {
@ -2332,6 +2513,8 @@ impl<'db> BindingError<'db> {
}
}
}
Self::UnmatchedOverload => {}
}
}