New AST nodes for f-string elements (#8835)

Rebase of #6365 authored by @davidszotten.

## Summary

This PR updates the AST structure for an f-string elements.

The main **motivation** behind this change is to have a dedicated node
for the string part of an f-string. Previously, the existing
`ExprStringLiteral` node was used for this purpose which isn't exactly
correct. The `ExprStringLiteral` node should include the quotes as well
in the range but the f-string literal element doesn't include the quote
as it's a specific part within an f-string. For example,

```python
f"foo {x}"
# ^^^^
# This is the literal part of an f-string
```

The introduction of `FStringElement` enum is helpful which represent
either the literal part or the expression part of an f-string.

### Rule Updates

This means that there'll be two nodes representing a string depending on
the context. One for a normal string literal while the other is a string
literal within an f-string. The AST checker is updated to accommodate
this change. The rules which work on string literal are updated to check
on the literal part of f-string as well.

#### Notes

1. The `Expr::is_literal_expr` method would check for
`ExprStringLiteral` and return true if so. But now that we don't
represent the literal part of an f-string using that node, this improves
the method's behavior and confines to the actual expression. We do have
the `FStringElement::is_literal` method.
2. We avoid checking if we're in a f-string context before adding to
`string_type_definitions` because the f-string literal is now a
dedicated node and not part of `Expr`.
3. Annotations cannot use f-string so we avoid changing any rules which
work on annotation and checks for `ExprStringLiteral`.

## Test Plan

- All references of `Expr::StringLiteral` were checked to see if any of
the rules require updating to account for the f-string literal element
node.
- New test cases are added for rules which check against the literal
part of an f-string.
- Check the ecosystem results and ensure it remains unchanged.

## Performance

There's a performance penalty in the parser. The reason for this remains
unknown as it seems that the generated assembly code is now different
for the `__reduce154` function. The reduce function body is just popping
the `ParenthesizedExpr` on top of the stack and pushing it with the new
location.

- The size of `FStringElement` enum is the same as `Expr` which is what
it replaces in `FString::format_spec`
- The size of `FStringExpressionElement` is the same as
`ExprFormattedValue` which is what it replaces

I tried reducing the `Expr` enum from 80 bytes to 72 bytes but it hardly
resulted in any performance gain. The difference can be seen here:
- Original profile: https://share.firefox.dev/3Taa7ES
- Profile after boxing some node fields:
https://share.firefox.dev/3GsNXpD

### Backtracking

I tried backtracking the changes to see if any of the isolated change
produced this regression. The problem here is that the overall change is
so small that there's only a single checkpoint where I can backtrack and
that checkpoint results in the same regression. This checkpoint is to
revert using `Expr` to the `FString::format_spec` field. After this
point, the change would revert back to the original implementation.

## Review process

The review process is similar to #7927. The first set of commits update
the node structure, parser, and related AST files. Then, further commits
update the linter and formatter part to account for the AST change.

---------

Co-authored-by: David Szotten <davidszotten@gmail.com>
This commit is contained in:
Dhruv Manilawala 2023-12-07 10:28:05 -06:00 committed by GitHub
parent fcc08894cf
commit cdac90ef68
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
77 changed files with 1714 additions and 1925 deletions

View file

@ -590,8 +590,6 @@ pub enum Expr {
Compare(ExprCompare),
#[is(name = "call_expr")]
Call(ExprCall),
#[is(name = "formatted_value_expr")]
FormattedValue(ExprFormattedValue),
#[is(name = "f_string_expr")]
FString(ExprFString),
#[is(name = "string_literal_expr")]
@ -919,19 +917,51 @@ impl From<ExprCall> for Expr {
}
}
/// See also [FormattedValue](https://docs.python.org/3/library/ast.html#ast.FormattedValue)
#[derive(Clone, Debug, PartialEq)]
pub struct ExprFormattedValue {
pub struct FStringFormatSpec {
pub range: TextRange,
pub value: Box<Expr>,
pub debug_text: Option<DebugText>,
pub conversion: ConversionFlag,
pub format_spec: Option<Box<Expr>>,
pub elements: Vec<FStringElement>,
}
impl From<ExprFormattedValue> for Expr {
fn from(payload: ExprFormattedValue) -> Self {
Expr::FormattedValue(payload)
impl Ranged for FStringFormatSpec {
fn range(&self) -> TextRange {
self.range
}
}
/// See also [FormattedValue](https://docs.python.org/3/library/ast.html#ast.FormattedValue)
#[derive(Clone, Debug, PartialEq)]
pub struct FStringExpressionElement {
pub range: TextRange,
pub expression: Box<Expr>,
pub debug_text: Option<DebugText>,
pub conversion: ConversionFlag,
pub format_spec: Option<Box<FStringFormatSpec>>,
}
impl Ranged for FStringExpressionElement {
fn range(&self) -> TextRange {
self.range
}
}
#[derive(Clone, Debug, PartialEq)]
pub struct FStringLiteralElement {
pub range: TextRange,
pub value: String,
}
impl Ranged for FStringLiteralElement {
fn range(&self) -> TextRange {
self.range
}
}
impl Deref for FStringLiteralElement {
type Target = str;
fn deref(&self) -> &Self::Target {
self.value.as_str()
}
}
@ -1064,7 +1094,7 @@ impl FStringValue {
self.parts().filter_map(|part| part.as_f_string())
}
/// Returns an iterator over all the f-string elements contained in this value.
/// Returns an iterator over all the [`FStringElement`] contained in this value.
///
/// An f-string element is what makes up an [`FString`] i.e., it is either a
/// string literal or an expression. In the following example,
@ -1075,8 +1105,8 @@ impl FStringValue {
///
/// The f-string elements returned would be string literal (`"bar "`),
/// expression (`x`) and string literal (`"qux"`).
pub fn elements(&self) -> impl Iterator<Item = &Expr> {
self.f_strings().flat_map(|fstring| fstring.values.iter())
pub fn elements(&self) -> impl Iterator<Item = &FStringElement> {
self.f_strings().flat_map(|fstring| fstring.elements.iter())
}
}
@ -1113,7 +1143,7 @@ impl Ranged for FStringPart {
#[derive(Clone, Debug, PartialEq)]
pub struct FString {
pub range: TextRange,
pub values: Vec<Expr>,
pub elements: Vec<FStringElement>,
}
impl Ranged for FString {
@ -1132,6 +1162,21 @@ impl From<FString> for Expr {
}
}
#[derive(Clone, Debug, PartialEq, is_macro::Is)]
pub enum FStringElement {
Literal(FStringLiteralElement),
Expression(FStringExpressionElement),
}
impl Ranged for FStringElement {
fn range(&self) -> TextRange {
match self {
FStringElement::Literal(node) => node.range(),
FStringElement::Expression(node) => node.range(),
}
}
}
/// An AST node that represents either a single string literal or an implicitly
/// concatenated string literals.
#[derive(Clone, Debug, Default, PartialEq)]
@ -3483,11 +3528,6 @@ impl Ranged for crate::nodes::ExprCall {
self.range
}
}
impl Ranged for crate::nodes::ExprFormattedValue {
fn range(&self) -> TextRange {
self.range
}
}
impl Ranged for crate::nodes::ExprFString {
fn range(&self) -> TextRange {
self.range
@ -3553,7 +3593,6 @@ impl Ranged for crate::Expr {
Self::YieldFrom(node) => node.range(),
Self::Compare(node) => node.range(),
Self::Call(node) => node.range(),
Self::FormattedValue(node) => node.range(),
Self::FString(node) => node.range(),
Self::StringLiteral(node) => node.range(),
Self::BytesLiteral(node) => node.range(),