This PR implements template strings (t-strings) in the parser and
formatter for Ruff.
Minimal changes necessary to compile were made in other parts of the code (e.g. ty, the linter, etc.). These will be covered properly in follow-up PRs.
## Summary
Part of #17412
Add a new compile-time syntax error for detecting `nonlocal`
declarations at a module level.
## Test Plan
- Added new inline tests for the syntax error
- Updated existing tests for `nonlocal` statement parsing to be inside a
function scope
Co-authored-by: Brent Westbrook <36778786+ntBre@users.noreply.github.com>
Summary
--
This PR extends semantic syntax error detection to red-knot. The main
changes here are:
1. Adding `SemanticSyntaxChecker` and `Vec<SemanticSyntaxError>` fields
to the `SemanticIndexBuilder`
2. Calling `SemanticSyntaxChecker::visit_stmt` and `visit_expr` in the
`SemanticIndexBuilder`'s `visit_stmt` and `visit_expr` methods
3. Implementing `SemanticSyntaxContext` for `SemanticIndexBuilder`
4. Adding new mdtests to test the context implementation and show
diagnostics
(3) is definitely the trickiest and required (I think) a minor addition
to the `SemanticIndexBuilder`. I tried to look around for existing code
performing the necessary checks, but I definitely could have missed
something or misused the existing code even when I found it.
There's still one TODO around `global` statement handling. I don't think
there's an existing way to look this up, but I'm happy to work on that
here or in a separate PR. This currently only affects detection of one
error (`LoadBeforeGlobalDeclaration` or
[PLE0118](https://docs.astral.sh/ruff/rules/load-before-global-declaration/)
in ruff), so it's not too big of a problem even if we leave the TODO.
Test Plan
--
New mdtests, as well as new errors for existing mdtests
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
Summary
--
This PR implements detecting the use of `await` expressions outside of
async functions. This is a reimplementation of
[await-outside-async
(PLE1142)](https://docs.astral.sh/ruff/rules/await-outside-async/) as a
semantic syntax error.
Despite the rule name, PLE1142 also applies to `async for` and `async
with`, so these are covered here too.
Test Plan
--
Existing PLE1142 tests.
I also deleted more code from the `SemanticSyntaxCheckerVisitor` to
avoid changes in other parser tests.
Summary
--
This PR reimplements [yield-outside-function
(F704)](https://docs.astral.sh/ruff/rules/yield-outside-function/) as a
semantic syntax error. Despite the name, this rule covers `yield from`
and `await` in addition to `yield`.
Test Plan
--
New linter tests, along with the existing F704 test.
---------
Co-authored-by: Dhruv Manilawala <dhruvmanila@gmail.com>
## Summary
Based on the discussion in
https://github.com/astral-sh/ruff/pull/17298#discussion_r2033975460, we
decided to move the scope handling out of the `SemanticSyntaxChecker`
and into the `SemanticSyntaxContext` trait. This PR implements that
refactor by:
- Reverting all of the `Checkpoint` and `in_async_context` code in the
`SemanticSyntaxChecker`
- Adding four new methods to the `SemanticSyntaxContext` trait
- `in_async_context`: matches `SemanticModel::in_async_context` and only
detects the nearest enclosing function
- `in_sync_comprehension`: uses the new `is_async` tracking on
`Generator` scopes to detect any enclosing sync comprehension
- `in_module_scope`: reports whether we're at the top-level scope
- `in_notebook`: reports whether we're in a Jupyter notebook
- In-lining the `TestContext` directly into the
`SemanticSyntaxCheckerVisitor`
- This allows modifying the context as the visitor traverses the AST,
which wasn't possible before
One potential question here is "why not add a single method returning a
`Scope` or `Scopes` to the context?" The main reason is that the `Scope`
type is defined in the `ruff_python_semantic` crate, which is not
currently a dependency of the parser. It also doesn't appear to be used
in red-knot. So it seemed best to use these more granular methods
instead of trying to access `Scope` in `ruff_python_parser` (and
red-knot).
## Test Plan
Existing parser and linter tests.
Summary
--
This PR fixes the issue pointed out by @JelleZijlstra in
https://github.com/astral-sh/ruff/pull/17101#issuecomment-2777480204.
Namely, I conflated two very different errors from CPython:
```pycon
>>> def m[T](x: (yield from 1)): ...
File "<python-input-310>", line 1
def m[T](x: (yield from 1)): ...
^^^^^^^^^^^^
SyntaxError: yield expression cannot be used within the definition of a generic
>>> def m(x: (yield from 1)): ...
File "<python-input-311>", line 1
def m(x: (yield from 1)): ...
^^^^^^^^^^^^
SyntaxError: 'yield from' outside function
>>> def outer():
... def m(x: (yield from 1)): ...
...
>>>
```
I thought the second error was the same as the first, but `yield` (and
`yield from`) is actually valid in this position when inside a function
scope. The same is true for base classes, as pointed out in the original
comment.
We don't currently raise an error for `yield` outside of a function, but
that should be handled separately.
On the upside, this had the benefit of removing the
`InvalidExpressionPosition::BaseClass` variant and the
`allow_named_expr` field from the visitor because they were both no
longer used.
Test Plan
--
Updated inline tests.
Summary
--
Detects duplicate literals in `match` mapping keys.
This PR also adds a `source` method to `SemanticSyntaxContext` to
display the duplicated key in the error message by slicing out its
range.
Test Plan
--
New inline tests.
Summary
--
This PR reimplements
[load-before-global-declaration
(PLE0118)](https://docs.astral.sh/ruff/rules/load-before-global-declaration/)
as a semantic syntax error.
I added a `global` method to the `SemanticSyntaxContext` trait to make
this very easy, at least in ruff. Does red-knot have something similar?
If this approach will also work in red-knot, I think some of the other
PLE rules are also compile-time errors in CPython, PLE0117 in
particular. 0115 and 0116 also mention `SyntaxError`s in their docs, but
I haven't confirmed them in the REPL yet.
Test Plan
--
Existing linter tests for PLE0118. I think this actually can't be tested
very easily in an inline test because the `TestContext` doesn't have a
real way to track globals.
---------
Co-authored-by: Micha Reiser <micha@reiser.io>
Summary
--
Detect setting or deleting `__debug__`. Assigning to `__debug__` was a
`SyntaxError` on the earliest version I tested (3.8). Deleting
`__debug__` was made a `SyntaxError` in [BPO 45000], which said it was
resolved in Python 3.10. However, `del __debug__` was also a runtime
error (`NameError`) when I tested in Python 3.9.6, so I thought it was
worth including 3.9 in this check.
I don't think it was ever a *good* idea to try `del __debug__`, so I
think there's also an argument for not making this version-dependent at
all. That would only simplify the implementation very slightly, though.
[BPO 45000]: https://github.com/python/cpython/issues/89163
Test Plan
--
New inline tests. This also required adding a `PythonVersion` field to
the `TestContext` that could be taken from the inline `ParseOptions` and
making the version field on the options accessible.
## Summary
This PR implements the "greeter" approach for checking the AST for
syntax errors emitted by the CPython compiler. It introduces two main
infrastructural changes to support all of the compile-time errors:
1. Adds a new `semantic_errors` module to the parser crate with public
`SemanticSyntaxChecker` and `SemanticSyntaxError` types
2. Embeds a `SemanticSyntaxChecker` in the `ruff_linter::Checker` for
checking these errors in ruff
As a proof of concept, it also implements detection of two syntax
errors:
1. A reimplementation of
[`late-future-import`](https://docs.astral.sh/ruff/rules/late-future-import/)
(`F404`)
2. Detection of rebound comprehension iteration variables
(https://github.com/astral-sh/ruff/issues/14395)
## Test plan
Existing F404 tests, new inline tests in the `ruff_python_parser` crate,
and a linter CLI test showing an example of the `Message` output.
I also tested in VS Code, where `preview = false` and turning off syntax
errors both disable the new errors:

And on the playground, where `preview = false` also disables the errors:

Fixes#14395
---------
Co-authored-by: Micha Reiser <micha@reiser.io>
Summary
--
This is a follow up addressing the comments on #16425. As @dhruvmanila
pointed out, the naming is a bit tricky. I went with `has_no_errors` to
try to differentiate it from `is_valid`. It actually ends up negated in
most uses, so it would be more convenient to have `has_any_errors` or
`has_errors`, but I thought it would sound too much like the opposite of
`is_valid` in that case. I'm definitely open to suggestions here.
Test Plan
--
Existing tests.
## Summary
This PR adds support for a pragma-style header for inline parser tests
containing JSON-serialized `ParseOptions`. For example,
```python
# parse_options: { "target-version": "3.9" }
match 2:
case 1:
pass
```
The line must start with `# parse_options: ` and then the rest of the
(trimmed) line is deserialized into `ParseOptions` used for parsing the
the test.
## Test Plan
Existing inline tests, plus two new inline tests for
`match-before-py310`.
---------
Co-authored-by: Alex Waygood <alex.waygood@gmail.com>
## Summary
This is part of the preparation for detecting syntax errors in the
parser from https://github.com/astral-sh/ruff/pull/16090/. As suggested
in [this
comment](https://github.com/astral-sh/ruff/pull/16090/#discussion_r1953084509),
I started working on a `ParseOptions` struct that could be stored in the
parser. For this initial refactor, I only made it hold the existing
`Mode` option, but for syntax errors, we will also need it to have a
`PythonVersion`. For that use case, I'm picturing something like a
`ParseOptions::with_python_version` method, so you can extend the
current calls to something like
```rust
ParseOptions::from(mode).with_python_version(settings.target_version)
```
But I thought it was worth adding `ParseOptions` alone without changing
any other behavior first.
Most of the diff is just updating call sites taking `Mode` to take
`ParseOptions::from(Mode)` or those taking `PySourceType`s to take
`ParseOptions::from(PySourceType)`. The interesting changes are in the
new `parser/options.rs` file and smaller parts of `parser/mod.rs` and
`ruff_python_parser/src/lib.rs`.
## Test Plan
Existing tests, this should not change any behavior.
We do this because `...` is valid Python, which makes it pretty likely
that some line trimming will lead to ambiguous output. So we add support
for overriding the cut indicator. This also requires changing some of
the alignment math, which was previously tightly coupled to `...`.
For Ruff, we go with `…` (`U+2026 HORIZONTAL ELLIPSIS`) for our cut
indicator.
For more details, see the patch sent to upstream:
https://github.com/rust-lang/annotate-snippets-rs/pull/172
This is pretty much just moving to the new API and taking care to use
byte offsets. This is *almost* enough. The next commit will fix a bug
involving the handling of unprintable characters as a result of
switching to byte offsets.
## Summary
This PR updates the parser test infrastructure to validate the token
ranges.
From the code documentation:
```
/// Verifies that:
/// * the ranges are strictly increasing when loop the tokens in insertion order
/// * all ranges are within the length of the source code
```
Follow-up from #12016 and #12017resolves: #11938
## Test Plan
Make sure that there are no failures.
## Summary
This PR updates the linter to show all the parse errors as diagnostics
instead of just the first one.
Note that this doesn't affect the parse error displayed as error log
message. This will be removed in a follow-up PR.
### Breaking?
I don't think this is a breaking change even though this might give more
diagnostics. The main reason is that this shouldn't affect any users
because it'll only give additional diagnostics in the case of multiple
syntax errors.
## Test Plan
Add an integration test case which would raise more than one parse
error.
## Summary
This PR updates the entire parser stack in multiple ways:
### Make the lexer lazy
* https://github.com/astral-sh/ruff/pull/11244
* https://github.com/astral-sh/ruff/pull/11473
Previously, Ruff's lexer would act as an iterator. The parser would
collect all the tokens in a vector first and then process the tokens to
create the syntax tree.
The first task in this project is to update the entire parsing flow to
make the lexer lazy. This includes the `Lexer`, `TokenSource`, and
`Parser`. For context, the `TokenSource` is a wrapper around the `Lexer`
to filter out the trivia tokens[^1]. Now, the parser will ask the token
source to get the next token and only then the lexer will continue and
emit the token. This means that the lexer needs to be aware of the
"current" token. When the `next_token` is called, the current token will
be updated with the newly lexed token.
The main motivation to make the lexer lazy is to allow re-lexing a token
in a different context. This is going to be really useful to make the
parser error resilience. For example, currently the emitted tokens
remains the same even if the parser can recover from an unclosed
parenthesis. This is important because the lexer emits a
`NonLogicalNewline` in parenthesized context while a normal `Newline` in
non-parenthesized context. This different kinds of newline is also used
to emit the indentation tokens which is important for the parser as it's
used to determine the start and end of a block.
Additionally, this allows us to implement the following functionalities:
1. Checkpoint - rewind infrastructure: The idea here is to create a
checkpoint and continue lexing. At a later point, this checkpoint can be
used to rewind the lexer back to the provided checkpoint.
2. Remove the `SoftKeywordTransformer` and instead use lookahead or
speculative parsing to determine whether a soft keyword is a keyword or
an identifier
3. Remove the `Tok` enum. The `Tok` enum represents the tokens emitted
by the lexer but it contains owned data which makes it expensive to
clone. The new `TokenKind` enum just represents the type of token which
is very cheap.
This brings up a question as to how will the parser get the owned value
which was stored on `Tok`. This will be solved by introducing a new
`TokenValue` enum which only contains a subset of token kinds which has
the owned value. This is stored on the lexer and is requested by the
parser when it wants to process the data. For example:
8196720f80/crates/ruff_python_parser/src/parser/expression.rs (L1260-L1262)
[^1]: Trivia tokens are `NonLogicalNewline` and `Comment`
### Remove `SoftKeywordTransformer`
* https://github.com/astral-sh/ruff/pull/11441
* https://github.com/astral-sh/ruff/pull/11459
* https://github.com/astral-sh/ruff/pull/11442
* https://github.com/astral-sh/ruff/pull/11443
* https://github.com/astral-sh/ruff/pull/11474
For context,
https://github.com/RustPython/RustPython/pull/4519/files#diff-5de40045e78e794aa5ab0b8aacf531aa477daf826d31ca129467703855408220
added support for soft keywords in the parser which uses infinite
lookahead to classify a soft keyword as a keyword or an identifier. This
is a brilliant idea as it basically wraps the existing Lexer and works
on top of it which means that the logic for lexing and re-lexing a soft
keyword remains separate. The change here is to remove
`SoftKeywordTransformer` and let the parser determine this based on
context, lookahead and speculative parsing.
* **Context:** The transformer needs to know the position of the lexer
between it being at a statement position or a simple statement position.
This is because a `match` token starts a compound statement while a
`type` token starts a simple statement. **The parser already knows
this.**
* **Lookahead:** Now that the parser knows the context it can perform
lookahead of up to two tokens to classify the soft keyword. The logic
for this is mentioned in the PR implementing it for `type` and `match
soft keyword.
* **Speculative parsing:** This is where the checkpoint - rewind
infrastructure helps. For `match` soft keyword, there are certain cases
for which we can't classify based on lookahead. The idea here is to
create a checkpoint and keep parsing. Based on whether the parsing was
successful and what tokens are ahead we can classify the remaining
cases. Refer to #11443 for more details.
If the soft keyword is being parsed in an identifier context, it'll be
converted to an identifier and the emitted token will be updated as
well. Refer
8196720f80/crates/ruff_python_parser/src/parser/expression.rs (L487-L491).
The `case` soft keyword doesn't require any special handling because
it'll be a keyword only in the context of a match statement.
### Update the parser API
* https://github.com/astral-sh/ruff/pull/11494
* https://github.com/astral-sh/ruff/pull/11505
Now that the lexer is in sync with the parser, and the parser helps to
determine whether a soft keyword is a keyword or an identifier, the
lexer cannot be used on its own. The reason being that it's not
sensitive to the context (which is correct). This means that the parser
API needs to be updated to not allow any access to the lexer.
Previously, there were multiple ways to parse the source code:
1. Passing the source code itself
2. Or, passing the tokens
Now that the lexer and parser are working together, the API
corresponding to (2) cannot exists. The final API is mentioned in this
PR description: https://github.com/astral-sh/ruff/pull/11494.
### Refactor the downstream tools (linter and formatter)
* https://github.com/astral-sh/ruff/pull/11511
* https://github.com/astral-sh/ruff/pull/11515
* https://github.com/astral-sh/ruff/pull/11529
* https://github.com/astral-sh/ruff/pull/11562
* https://github.com/astral-sh/ruff/pull/11592
And, the final set of changes involves updating all references of the
lexer and `Tok` enum. This was done in two-parts:
1. Update all the references in a way that doesn't require any changes
from this PR i.e., it can be done independently
* https://github.com/astral-sh/ruff/pull/11402
* https://github.com/astral-sh/ruff/pull/11406
* https://github.com/astral-sh/ruff/pull/11418
* https://github.com/astral-sh/ruff/pull/11419
* https://github.com/astral-sh/ruff/pull/11420
* https://github.com/astral-sh/ruff/pull/11424
2. Update all the remaining references to use the changes made in this
PR
For (2), there were various strategies used:
1. Introduce a new `Tokens` struct which wraps the token vector and add
methods to query a certain subset of tokens. These includes:
1. `up_to_first_unknown` which replaces the `tokenize` function
2. `in_range` and `after` which replaces the `lex_starts_at` function
where the former returns the tokens within the given range while the
latter returns all the tokens after the given offset
2. Introduce a new `TokenFlags` which is a set of flags to query certain
information from a token. Currently, this information is only limited to
any string type token but can be expanded to include other information
in the future as needed. https://github.com/astral-sh/ruff/pull/11578
3. Move the `CommentRanges` to the parsed output because this
information is common to both the linter and the formatter. This removes
the need for `tokens_and_ranges` function.
## Test Plan
- [x] Update and verify the test snapshots
- [x] Make sure the entire test suite is passing
- [x] Make sure there are no changes in the ecosystem checks
- [x] Run the fuzzer on the parser
- [x] Run this change on dozens of open-source projects
### Running this change on dozens of open-source projects
Refer to the PR description to get the list of open source projects used
for testing.
Now, the following tests were done between `main` and this branch:
1. Compare the output of `--select=E999` (syntax errors)
2. Compare the output of default rule selection
3. Compare the output of `--select=ALL`
**Conclusion: all output were same**
## What's next?
The next step is to introduce re-lexing logic and update the parser to
feed the recovery information to the lexer so that it can emit the
correct token. This moves us one step closer to having error resilience
in the parser and provides Ruff the possibility to lint even if the
source code contains syntax errors.
(Supersedes #9152, authored by @LaBatata101)
## Summary
This PR replaces the current parser generated from LALRPOP to a
hand-written recursive descent parser.
It also updates the grammar for [PEP
646](https://peps.python.org/pep-0646/) so that the parser outputs the
correct AST. For example, in `data[*x]`, the index expression is now a
tuple with a single starred expression instead of just a starred
expression.
Beyond the performance improvements, the parser is also error resilient
and can provide better error messages. The behavior as seen by any
downstream tools isn't changed. That is, the linter and formatter can
still assume that the parser will _stop_ at the first syntax error. This
will be updated in the following months.
For more details about the change here, refer to the PR corresponding to
the individual commits and the release blog post.
## Test Plan
Write _lots_ and _lots_ of tests for both valid and invalid syntax and
verify the output.
## Acknowledgements
- @MichaReiser for reviewing 100+ parser PRs and continuously providing
guidance throughout the project
- @LaBatata101 for initiating the transition to a hand-written parser in
#9152
- @addisoncrump for implementing the fuzzer which helped
[catch](https://github.com/astral-sh/ruff/pull/10903)
[a](https://github.com/astral-sh/ruff/pull/10910)
[lot](https://github.com/astral-sh/ruff/pull/10966)
[of](https://github.com/astral-sh/ruff/pull/10896)
[bugs](https://github.com/astral-sh/ruff/pull/10877)
---------
Co-authored-by: Victor Hugo Gomes <labatata101@linuxmail.org>
Co-authored-by: Micha Reiser <micha@reiser.io>