## Summary
* Partial #17238
* Flyby from discord discussion - `todo_type!` now statically checks for
no parens in the message to avoid issues between debug & release build
tests
## Test Plan
many mdtests are changing
## Summary
This PR moves all the relation methods from `CallableType` to
`Signature`.
The main reason for this is that `Signature` is going to be the common
denominator between normal and overloaded callables and the core logic
to check a certain relationship is going to just require the information
that would exists on `Signature`. For example, to check whether an
overloaded callable is a subtype of a normal callable, we need to check
whether _every_ overloaded signature is a subtype of the normal
callable's signature. This "every" logic would become part of the
`CallableType` and the core logic of checking the subtyping would exists
on `Signature`.
## Summary
Allows us to establish that two literals do not have a subtype
relationship with each other, without having to fallback to a typeshed
Instance type, which is comparatively slow.
Improves the performance of the many-string-literals union benchmark by
5x.
## Test Plan
`cargo test -p red_knot_python_semantic` and `cargo bench --bench
red_knot`.
This commit shuffles the reporting API around a little bit such that a
range is required, up front, when reporting a lint diagnostic. This in
turn enables us to make suppression checking eager.
In order to avoid callers needing to provide the range twice, we create
a primary annotation *without* a message inside the `Diagnostic`
encapsulated by the guard. We do this instead of requiring the message
up front because we're concerned about API complexity and the effort
involved in creating the message.
In order to provide a means of attaching a message to the primary
annotation, we expose a convenience API on `LintDiagnosticGuard` for
setting the message. This isn't generally possible for a `Diagnostic`,
but since a `LintDiagnosticGuard` knows how the `Diagnostic` was
constructed, we can offer this API correctly.
It strikes me that it might be easy to forget to attach a primary
annotation message, btu I think this the "least" bad failure mode. And
in particular, it should be somewhat obvious that it's missing once one
adds a snapshot test for how the diagnostic renders.
Otherwise, this API gives us the ability to eagerly check whether a
diagnostic should be reported with nearly minimal information. It also
shouldn't have any footguns since it guarantees that the primary
annotation is tied to the file in the typing context. And it keeps
things pretty simple: callers only need to provide what is actually
strictly necessary to make a diagnostic.
This is the payoff from removing a bit of indirection. The types still
exist, but now callers don't need to do builder -> reporter ->
diagnostic. They can just conceptually think of it as builder ->
diagnostic.
We're going to make the guards deref to `Diagnostic` in order to remove
a layer of indirection in the reporter API. (Well, technically the layer
is not removed since the types still exist, but in actual _usage_ the
layer will be removed. We'll see how it shakes out in the next commit.)
## Summary
Infer precise Boolean literal types for `str.startswith` calls where the
instance and the prefix are both string literals. This allows us to
understand `sys.platform.startswith(…)` branches.
## Test Plan
New Markdown tests
## Summary
For silencing `invalid-type-form` diagnostics in unreachable code, we
use the same approach that we use before and check the reachability that
we already record.
For silencing `invalid-bases`, we simply check if the type of the base
is `Never`. If so, we silence the diagnostic with the argument that the
class construction would never happen.
## Test Plan
Updated Markdown tests.
## Summary
Similar to what we did for `unresolved-reference` and
`unresolved-attribute`, we now also silence `unresolved-import`
diagnostics if the corresponding `import` statement is unreachable.
This addresses the (already closed) issue #17049.
## Test Plan
Adapted Markdown tests.
This finally completes the deletion of all old diagnostic types.
We do this by migrating the second (and last) use of secondary
diagnostic messages: to highlight the return type of a function
definition when its return value is inconsistent with the type.
Like the last diagnostic, we do actually change the message here a bit.
We don't need a sub-diagnostic here, and we can instead just add a
secondary annotation to highlight the return type.
This is the first use of the new `lint()` reporter.
I somewhat skipped a step here and also modified the actual diagnostic
message itself. The snapshots should tell the story.
We couldn't do this before because we had no way of differentiating
between "message for the diagnostic as a whole" and "message for a
specific code annotation." Now we can, so we can write more precise
messages based on the assumption that users are also seeing the code
snippet.
The downside here is that the actual message text can become quite vague
in the absence of the code snippet. This occurs, for example, with
concise diagnostic formatting. It's unclear if we should do anything
about it. I don't really see a way to make it better that doesn't
involve creating diagnostics with messages for each mode, which I think
would be a major PITA.
The upside is that this code gets a bit simpler, and we very
specifically avoid doing extra work if this specific lint is disabled.
This required a bit of surgery in the diagnostic matching and more
faffing about using a "concise" message from a diagnostic instead of
only printing the "primary" message.
In the new diagnostic data model, we really should have a main
diagnostic message *and* a primary span (with an optional message
attached to it) for every diagnostic.
In this commit, I try to make this true for the "revealed type"
diagnostic. Instead of the annotation saying both "revealed type is"
and also the revealed type itself, the annotation is now just the
revealed type and the main diagnostic message is "Revealed type."
I expect this may be controversial. I'm open to doing something
different. I tried to avoid redundancy, but maybe this is a special case
where we want the redundancy. I'm honestly not sure. I do *like* how it
looks with this commit, but I'm not working with Red Knot's type
checking daily, so my opinion doesn't count for much.
This did also require some tweaking to concise diagnostic formatting in
order to preserve the essential information.
This commit doesn't update every relevant snapshot. Just a few. I split
the rest out into the next commit.
... and replace it with use of `report()`.
Interestingly, this is the only instance of `report_diagnostic` used
directly, and thus anticipated to be the only instance of using
`report()`. If this ends up being a true single use method, we could
make it less generic and tailored specifically to "reveal type."
Two other things to note:
I left the "primary message" as empty. This avoids changing snapshots.
I address this in a subsequent commit.
The creation of a diagnostic here is a bit verbose/annoying. Certainly
more so than it was. This is somewhat expected since our diagnostic
model is more expressive and because we don't have a proc macro. I
avoided creating helpers for this case since there's only one use of
`report()`. But I expect to create helpers for the `lint()` case.
This is a surgical change that adds new `report()` and `lint()`
APIs to `InferContext`. These are intended to replace the existing
`report_*` APIs.
The comments should explain what these reporters are meant to do. For
the most part, this is "just" shuffling some code around. The actual
logic for determining whether a lint *should* be reported or not remains
unchanged and we don't make any changes to how a `Diagnostic` is
actually constructed (yet).
I initially tried to just use `LintReporter` and `DiagnosticReporter`
without the builder types, since I perceive the builder types to be an
annoying additional layer. But I found it also exceedingly annoying to
have to construct and provide the diagnostic message before you even
know if you are going to build the diagnostic. I also felt like this
could result in potentially unnecessary and costly querying in some
cases, although this is somewhat hand wavy. So I overall felt like the
builder route was the way to go. If the builders end up being super
annoying, we can probably add convenience APIs for common patterns to
paper over them.
## Summary
Basically just repeat the same thing that we did for
`unresolved-reference`, but now for attribute expressions.
We now also handle the case where the unresolved attribute (or the
unresolved reference) diagnostic originates from a stringified type
annotation.
And I made the evaluation of reachability constraints lazy (will only be
evaluated right before we are about to emit a diagnostic).
## Test Plan
New Markdown tests for stringified annotations.
I merged #17149 without checking the ecosystem results, and it still
caused a cycle panic in pybind11. Reverting for now until I fix that, so
we don't lose the ecosystem signal on other PRs.
This causes spurious query cycles.
This PR also includes an update to Salsa, which gives us db events on
cycle iteration, so we can write tests asserting the absence of a cycle.
## Summary
Track the reachability of nested scopes within their parent scopes. We
use this as an additional requirement for emitting
`unresolved-reference` diagnostics (and in the future,
`unresolved-attribute` and `unresolved-import`). This means that we only
emit `unresolved-reference` for a given use of a symbol if the use
itself is reachable (within its own scope), *and if the scope itself is
reachable*. For example, no diagnostic should be emitted for the use of
`x` here:
```py
if False:
x = 1
def f():
print(x) # this use of `x` is reachable inside the `f` scope,
# but the whole `f` scope is not reachable.
```
There are probably more fine-grained ways of solving this problem, but
they require a more sophisticated understanding of nested scopes (see
#15777, in particular
https://github.com/astral-sh/ruff/issues/15777#issuecomment-2788950267).
But it doesn't seem completely unreasonable to silence *this specific
kind of error* in unreachable scopes.
## Test Plan
Observed changes in reachability tests and ecosystem.
## Summary
Update Salsa to pull in https://github.com/salsa-rs/salsa/pull/788 which
fixes the, by now, famous *access to field whilst the value is being
initialized*.
This PR also re-enables all tests that previously triggered the panic.
## Test Plan
`cargo test`
## Summary
There is a new official URL for the typing documentation:
https://typing.python.org/
Change all https://typing.readthedocs.io/ links to use the new sub
domain, which is slightly shorter and looks more official.
## Test Plan
Tested to see if each and every new URL is accessible. I noticed that
some links go to https://typing.python.org/en/latest/source/stubs.html
which seems to be outdated, but that is a separate issue. The same page
shows up for the old URL.
This PR lets you explicitly specialize a generic class using a subscript
expression. It introduces three new Rust types for representing classes:
- `NonGenericClass`
- `GenericClass` (not specialized)
- `GenericAlias` (specialized)
and two enum wrappers:
- `ClassType` (a non-generic class or generic alias, represents a class
_type_ at runtime)
- `ClassLiteralType` (a non-generic class or generic class, represents a
class body in the AST)
We also add internal support for specializing callables, in particular
function literals. (That is, the internal `Type` representation now
attaches an optional specialization to a function literal.) This is used
in this PR for the methods of a generic class, but should also give us
most of what we need for specializing generic _functions_ (which this PR
does not yet tackle).
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
Co-authored-by: Carl Meyer <carl@astral.sh>
## Summary
As discussed in https://github.com/astral-sh/ruff/issues/16983 and
"mitigate" said issue for the alpha.
This PR changes the default for `PythonPlatform` to be the current
platform rather than `all`.
I'm not sure if we should be as sophisticated as supporting `ios` and
`android` as defaults but it was easy...
## Test Plan
Updated Markdown tests.
---------
Co-authored-by: David Peter <mail@david-peter.de>
## Summary
This is a new test case that I don't know how to handle yet. It leads to
many false positives in `rich/tests/test_win32_console.py`, which does
something like:
```py
if sys.platform == "win32":
from windows_only_module import some_symbol
some_other_symbol = 1
def some_test_case():
use(some_symbol) # Red Knot: unresolved-reference
use(some_other_symbol) # Red Knot: unresolved-reference
```
Also adds a test for using unreachable symbols in type annotations or as
class bases.
## Summary
* Addresses #16511 for simple cases where only `__init__` method is
bound on class or doesn't exist at all.
* fixes a bug with argument counting in bound method diagnostics
Caveats:
* No handling of `__new__` or modified `__call__` on metaclass.
* This leads to a couple of false positive errors in tests
## Test Plan
- A couple new cases in mdtests
- cargo nextest run -p red_knot_python_semantic --no-fail-fast
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
Co-authored-by: David Peter <sharkdp@users.noreply.github.com>
## Summary
We already have partial "support" for `assert_never`, because it is
annotated as
```pyi
def assert_never(arg: Never, /) -> Never: ...
```
in typeshed. So we already emit a `invalid-argument-type` diagnostic if
the argument type to `assert_never` is not assignable to `Never`.
That is not enough, however. Gradual types like `Any`, `Unknown`,
`@Todo(…)` or `Any & int` can be assignable to `Never`. Which means that
we didn't issue any diagnostic in those cases.
Also, it seems like `assert_never` deserves a dedicated diagnostic
message, not just a generic "invalid argument type" error.
## Test Plan
New Markdown tests.
## Summary
This implements a new approach to silencing `unresolved-reference`
diagnostics by keeping track of the reachability of each use of a
symbol. The changes merged in
https://github.com/astral-sh/ruff/pull/17169 are still needed for the
"Use of variable in nested function" test case, but that could also be
solved in another way eventually (see
https://github.com/astral-sh/ruff/issues/15777). We can use the same
technique to silence `unresolved-import` and `unresolved-attribute`
false-positives, but I think this could be merged in isolation.
## Test Plan
New Markdown tests, ecosystem tests
## Summary
This PR adds support for stub packages, except for partial stub packages
(a stub package is always considered non-partial).
I read the specification at
[typing.python.org/en/latest/spec/distributing.html#stub-only-packages](https://typing.python.org/en/latest/spec/distributing.html#stub-only-packages)
but I found it lacking some details, especially on how to handle
namespace packages or when the regular and stub packages disagree on
whether they're namespace packages. I tried to document my decisions in
the mdtests where the specification isn't clear and compared the
behavior to Pyright.
Mypy seems to only support stub packages in the venv folder. At least,
it never picked up my stub packages otherwise. I decided not to spend
too much time fighting mypyp, which is why I focused the comparison
around Pyright
Closes https://github.com/astral-sh/ruff/issues/16612
## Test plan
Added mdtests
## Summary
Some more edge cases that I thought of while working on integrating
knowledge of statically known branches into the `*`-import machinery
## Test Plan
`cargo test -p red_knot_python_semantic`
## Summary
This PR does the following things:
- Fixes the `python` configuration setting for mdtest (added in
https://github.com/astral-sh/ruff/pull/17221) so that it expects a path
pointing to a venv's `sys.prefix` variable rather than the a path
pointing to the venv's `site-packages` subdirectory. This brings the
`python` setting in mdtest in sync with our CLI `--python` flag.
- Tweaks mdtest so that it automatically creates a valid `pyvenv.cfg`
file for you if you don't specify one. This makes it much more ergonomic
to write an mdtest with a custom `python` setting: red-knot will reject
a `python` setting that points to a directory that doesn't have a
`pyvenv.cfg` file in it
- Tweaks mdtest so that it doesn't check a custom `pyvenv.cfg` as Python
source code if you _do_ add a custom `pyvenv.cfg` file for your mock
virtual environment in an mdtest. (You get a lot of diagnostics about
Python syntax errors in the `pyvenv.cfg` file, otherwise!)
- Rewrites the test added in
https://github.com/astral-sh/ruff/pull/17178 as an mdtest, and deletes
the original test that was added in that PR
## Test Plan
I verified that the new mdtest fails if I revert the changes to
`resolver.rs` that were added in
https://github.com/astral-sh/ruff/pull/17178
## Summary
This PR fixes the cycle issue that was causing problems in the `support
super` PR.
### Affected queries
- `all_narrowing_constraints_for_expression`
- `all_negative_narrowing_constraints_for_expression`
--
Additionally, `bidict` and `werkzeug` have been added to the
project-selection list in `mypy_primer`.
This PR also addresses the panics that occurred while analyzing those
packages:
- `bidict`: panic triggered by
`all_narrowing_constraints_for_expression`
- `werkzeug`: panic triggered by
`all_negative_narrowing_constraints_for_expression`
I think the mypy-primer results for this PR can serve as sufficient test
:)
## Summary
This is a follow up to the goto type definition PR. Specifically, that
we want to avoid exposing too many semantic model internals publicly.
I want to get some feedback on the approach taken. I think it goes into
the right direction but I'm not super happy with it.
The basic idea is that we add a `Type::definition` method which does the
"goto type definition". The parts that I think make it awkward:
* We can't directly return `Definition` because we don't create a
`Definition` for modules (but we could?). Although I think it makes
sense to possibly have a more public wrapper type anyway?
* It doesn't handle unions and intersections. Mainly because not all
elements in an intersection may have a definition and we only want to
show a navigation target for intersections if there's only a single
positive element (besides maybe `Unknown`).
An alternative design or an addition to this design is to introduce a
`SemanticAnalysis(Db)` struct that has methods like
`type_definition(&self, type)` which explicitly exposes the methods we
want. I don't feel comfortable design this API yet because it's unclear
how fine granular it has to be (and if it is very fine granular,
directly using `Type` might be better after all)
## Test Plan
`cargo test`
For two non-disjoint types `P` and `Q`, the simplification of `(P | Q) &
~Q` is not `P`, but `P & ~Q`. In other words, the non-empty set `P & Q`
is also excluded from the type.
The same applies for a constrained typevar `[T: (P, Q)]`: `T & ~Q`
should simplify to `P & ~Q`, not just `P`.
Implementing this is actually purely a matter of removing code from the
constrained typevar simplification logic; we just need to not bother
removing the negations. If the negations are actually redundant (because
the constraint types are disjoint), normal intersection simplification
will already eliminate them (as shown in the added test.)
## Summary
It turns out that `a.` isn't a list format supported by rustdoc. I
changed the documentation to use `1.`, `2.` instead.
## Test Plan
`cargo clippy`