## Summary
I used `cargo-shear` (see
[tweet](https://twitter.com/boshen_c/status/1770106165923586395)) to
remove some unused dependencies that `cargo udeps` wasn't reporting.
<!-- What's the purpose of the change? What does it do, and why? -->
## Test Plan
`cargo test`
## Summary
This PR modifies our `Cargo.toml` files to use workspace dependencies
for _all_ dependencies, rather than the status quo of sporadically
trying to use workspace dependencies for those dependencies that are
used across multiple crates. I find the current situation more confusing
and harder to manage, since we have a mix of workspace and crate-local
dependencies, whereas this setup consistently uses the same approach for
all dependencies.
Update to [Rust
1.74](https://blog.rust-lang.org/2023/11/16/Rust-1.74.0.html) and use
the new clippy lints table.
The update itself introduced a new clippy lint about superfluous hashes
in raw strings, which got removed.
I moved our lint config from `rustflags` to the newly stabilized
[workspace.lints](https://doc.rust-lang.org/stable/cargo/reference/workspaces.html#the-lints-table).
One consequence is that we have to `unsafe_code = "warn"` instead of
"forbid" because the latter now actually bans unsafe code:
```
error[E0453]: allow(unsafe_code) incompatible with previous forbid
--> crates/ruff_source_file/src/newlines.rs:62:17
|
62 | #[allow(unsafe_code)]
| ^^^^^^^^^^^ overruled by previous forbid
|
= note: `forbid` lint level was set on command line
```
---------
Co-authored-by: Charlie Marsh <charlie.r.marsh@gmail.com>
## Summary
This is a follow-up to #7469 that attempts to achieve similar gains, but
without introducing malachite. Instead, this PR removes the `BigInt`
type altogether, instead opting for a simple enum that allows us to
store small integers directly and only allocate for values greater than
`i64`:
```rust
/// A Python integer literal. Represents both small (fits in an `i64`) and large integers.
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct Int(Number);
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub enum Number {
/// A "small" number that can be represented as an `i64`.
Small(i64),
/// A "large" number that cannot be represented as an `i64`.
Big(Box<str>),
}
impl std::fmt::Display for Number {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Number::Small(value) => write!(f, "{value}"),
Number::Big(value) => write!(f, "{value}"),
}
}
}
```
We typically don't care about numbers greater than `isize` -- our only
uses are comparisons against small constants (like `1`, `2`, `3`, etc.),
so there's no real loss of information, except in one or two rules where
we're now a little more conservative (with the worst-case being that we
don't flag, e.g., an `itertools.pairwise` that uses an extremely large
value for the slice start constant). For simplicity, a few diagnostics
now show a dedicated message when they see integers that are out of the
supported range (e.g., `outdated-version-block`).
An additional benefit here is that we get to remove a few dependencies,
especially `num-bigint`.
## Test Plan
`cargo test`
In https://github.com/astral-sh/ruff/pull/6616 we are adding support for
nested replacements in format specifiers which makes actually formatting
strings infeasible without a great deal of complexity. Since we're not
using these functions (they just exist for runtime use in RustPython),
we can just remove them.