This PR implements template strings (t-strings) in the parser and
formatter for Ruff.
Minimal changes necessary to compile were made in other parts of the code (e.g. ty, the linter, etc.). These will be covered properly in follow-up PRs.
<!--
Thank you for contributing to Ruff! To help us out with reviewing,
please consider the following:
- Does this pull request include a summary of the change? (See below.)
- Does this pull request include a descriptive title?
- Does this pull request include references to any relevant issues?
-->
## Summary
I decided to disable the new
[`needless_continue`](https://rust-lang.github.io/rust-clippy/master/index.html#needless_continue)
rule because I often found the explicit `continue` more readable over an
empty block or having to invert the condition of an other branch.
## Test Plan
`cargo test`
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
## Summary
This is part of the preparation for detecting syntax errors in the
parser from https://github.com/astral-sh/ruff/pull/16090/. As suggested
in [this
comment](https://github.com/astral-sh/ruff/pull/16090/#discussion_r1953084509),
I started working on a `ParseOptions` struct that could be stored in the
parser. For this initial refactor, I only made it hold the existing
`Mode` option, but for syntax errors, we will also need it to have a
`PythonVersion`. For that use case, I'm picturing something like a
`ParseOptions::with_python_version` method, so you can extend the
current calls to something like
```rust
ParseOptions::from(mode).with_python_version(settings.target_version)
```
But I thought it was worth adding `ParseOptions` alone without changing
any other behavior first.
Most of the diff is just updating call sites taking `Mode` to take
`ParseOptions::from(Mode)` or those taking `PySourceType`s to take
`ParseOptions::from(PySourceType)`. The interesting changes are in the
new `parser/options.rs` file and smaller parts of `parser/mod.rs` and
`ruff_python_parser/src/lib.rs`.
## Test Plan
Existing tests, this should not change any behavior.
## Summary
This is a follow-up to #15726, #15778, and #15794 to preserve the triple
quote and prefix flags in plain strings, bytestrings, and f-strings.
I also added a `StringLiteralFlags::without_triple_quotes` method to
avoid passing along triple quotes in rules like SIM905 where it might
not make sense, as discussed
[here](https://github.com/astral-sh/ruff/pull/15726#discussion_r1930532426).
## Test Plan
Existing tests, plus many new cases in the `generator::tests::quote`
test that should cover all combinations of quotes and prefixes, at least
for simple string bodies.
Closes#7799 when combined with #15694, #15726, #15778, and #15794.
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
## Summary
This PR fixes a bug in the f-string formatting to not consider the
escaped newlines for `is_multiline`. This is done by checking if the
f-string is triple-quoted or not similar to normal string literals.
This is not required to be gated behind preview because the logic change
for `is_multiline` was added in
https://github.com/astral-sh/ruff/pull/14454.
## Test Plan
Add a test case which formats differently on `main`:
https://play.ruff.rs/ea3c55c2-f0fe-474e-b6b8-e3365e0ede5e
## Summary
fixes: #14608
The logic that was only applied for 3.12+ target version needs to be
applied for other versions as well.
## Test Plan
I've moved the existing test cases for 3.12 only to `f_string.py` so
that it's tested against the default target version.
I think we should probably enabled testing for two target version (pre
3.12 and 3.12) but it won't highlight any issue because the parser
doesn't consider this. Maybe we should enable this once we have target
version specific syntax errors in place
(https://github.com/astral-sh/ruff/issues/6591).
## Summary
fixes: #13813
This PR fixes a bug in the formatting assignment statement when the
value is an f-string.
This is resolved by using custom best fit layouts if the f-string is (a)
not already a flat f-string (thus, cannot be multiline) and (b) is not a
multiline string (thus, cannot be flattened). So, it is used in cases
like the following:
```py
aaaaaaaaaaaaaaaaaa = f"testeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee{
expression}moreeeeeeeeeeeeeeeee"
```
Which is (a) `FStringLayout::Multiline` and (b) not a multiline.
There are various other examples in the PR diff along with additional
explanation and context as code comments.
## Test Plan
Add multiple test cases for various scenarios.
## Summary
This PR updates the parser to remove building the `CommentRanges` and
instead it'll be built by the linter and the formatter when it's
required.
For the linter, it'll be built and owned by the `Indexer` while for the
formatter it'll be built from the `Tokens` struct and passed as an
argument.
## Test Plan
`cargo insta test`
## Summary
This PR updates the entire parser stack in multiple ways:
### Make the lexer lazy
* https://github.com/astral-sh/ruff/pull/11244
* https://github.com/astral-sh/ruff/pull/11473
Previously, Ruff's lexer would act as an iterator. The parser would
collect all the tokens in a vector first and then process the tokens to
create the syntax tree.
The first task in this project is to update the entire parsing flow to
make the lexer lazy. This includes the `Lexer`, `TokenSource`, and
`Parser`. For context, the `TokenSource` is a wrapper around the `Lexer`
to filter out the trivia tokens[^1]. Now, the parser will ask the token
source to get the next token and only then the lexer will continue and
emit the token. This means that the lexer needs to be aware of the
"current" token. When the `next_token` is called, the current token will
be updated with the newly lexed token.
The main motivation to make the lexer lazy is to allow re-lexing a token
in a different context. This is going to be really useful to make the
parser error resilience. For example, currently the emitted tokens
remains the same even if the parser can recover from an unclosed
parenthesis. This is important because the lexer emits a
`NonLogicalNewline` in parenthesized context while a normal `Newline` in
non-parenthesized context. This different kinds of newline is also used
to emit the indentation tokens which is important for the parser as it's
used to determine the start and end of a block.
Additionally, this allows us to implement the following functionalities:
1. Checkpoint - rewind infrastructure: The idea here is to create a
checkpoint and continue lexing. At a later point, this checkpoint can be
used to rewind the lexer back to the provided checkpoint.
2. Remove the `SoftKeywordTransformer` and instead use lookahead or
speculative parsing to determine whether a soft keyword is a keyword or
an identifier
3. Remove the `Tok` enum. The `Tok` enum represents the tokens emitted
by the lexer but it contains owned data which makes it expensive to
clone. The new `TokenKind` enum just represents the type of token which
is very cheap.
This brings up a question as to how will the parser get the owned value
which was stored on `Tok`. This will be solved by introducing a new
`TokenValue` enum which only contains a subset of token kinds which has
the owned value. This is stored on the lexer and is requested by the
parser when it wants to process the data. For example:
8196720f80/crates/ruff_python_parser/src/parser/expression.rs (L1260-L1262)
[^1]: Trivia tokens are `NonLogicalNewline` and `Comment`
### Remove `SoftKeywordTransformer`
* https://github.com/astral-sh/ruff/pull/11441
* https://github.com/astral-sh/ruff/pull/11459
* https://github.com/astral-sh/ruff/pull/11442
* https://github.com/astral-sh/ruff/pull/11443
* https://github.com/astral-sh/ruff/pull/11474
For context,
https://github.com/RustPython/RustPython/pull/4519/files#diff-5de40045e78e794aa5ab0b8aacf531aa477daf826d31ca129467703855408220
added support for soft keywords in the parser which uses infinite
lookahead to classify a soft keyword as a keyword or an identifier. This
is a brilliant idea as it basically wraps the existing Lexer and works
on top of it which means that the logic for lexing and re-lexing a soft
keyword remains separate. The change here is to remove
`SoftKeywordTransformer` and let the parser determine this based on
context, lookahead and speculative parsing.
* **Context:** The transformer needs to know the position of the lexer
between it being at a statement position or a simple statement position.
This is because a `match` token starts a compound statement while a
`type` token starts a simple statement. **The parser already knows
this.**
* **Lookahead:** Now that the parser knows the context it can perform
lookahead of up to two tokens to classify the soft keyword. The logic
for this is mentioned in the PR implementing it for `type` and `match
soft keyword.
* **Speculative parsing:** This is where the checkpoint - rewind
infrastructure helps. For `match` soft keyword, there are certain cases
for which we can't classify based on lookahead. The idea here is to
create a checkpoint and keep parsing. Based on whether the parsing was
successful and what tokens are ahead we can classify the remaining
cases. Refer to #11443 for more details.
If the soft keyword is being parsed in an identifier context, it'll be
converted to an identifier and the emitted token will be updated as
well. Refer
8196720f80/crates/ruff_python_parser/src/parser/expression.rs (L487-L491).
The `case` soft keyword doesn't require any special handling because
it'll be a keyword only in the context of a match statement.
### Update the parser API
* https://github.com/astral-sh/ruff/pull/11494
* https://github.com/astral-sh/ruff/pull/11505
Now that the lexer is in sync with the parser, and the parser helps to
determine whether a soft keyword is a keyword or an identifier, the
lexer cannot be used on its own. The reason being that it's not
sensitive to the context (which is correct). This means that the parser
API needs to be updated to not allow any access to the lexer.
Previously, there were multiple ways to parse the source code:
1. Passing the source code itself
2. Or, passing the tokens
Now that the lexer and parser are working together, the API
corresponding to (2) cannot exists. The final API is mentioned in this
PR description: https://github.com/astral-sh/ruff/pull/11494.
### Refactor the downstream tools (linter and formatter)
* https://github.com/astral-sh/ruff/pull/11511
* https://github.com/astral-sh/ruff/pull/11515
* https://github.com/astral-sh/ruff/pull/11529
* https://github.com/astral-sh/ruff/pull/11562
* https://github.com/astral-sh/ruff/pull/11592
And, the final set of changes involves updating all references of the
lexer and `Tok` enum. This was done in two-parts:
1. Update all the references in a way that doesn't require any changes
from this PR i.e., it can be done independently
* https://github.com/astral-sh/ruff/pull/11402
* https://github.com/astral-sh/ruff/pull/11406
* https://github.com/astral-sh/ruff/pull/11418
* https://github.com/astral-sh/ruff/pull/11419
* https://github.com/astral-sh/ruff/pull/11420
* https://github.com/astral-sh/ruff/pull/11424
2. Update all the remaining references to use the changes made in this
PR
For (2), there were various strategies used:
1. Introduce a new `Tokens` struct which wraps the token vector and add
methods to query a certain subset of tokens. These includes:
1. `up_to_first_unknown` which replaces the `tokenize` function
2. `in_range` and `after` which replaces the `lex_starts_at` function
where the former returns the tokens within the given range while the
latter returns all the tokens after the given offset
2. Introduce a new `TokenFlags` which is a set of flags to query certain
information from a token. Currently, this information is only limited to
any string type token but can be expanded to include other information
in the future as needed. https://github.com/astral-sh/ruff/pull/11578
3. Move the `CommentRanges` to the parsed output because this
information is common to both the linter and the formatter. This removes
the need for `tokens_and_ranges` function.
## Test Plan
- [x] Update and verify the test snapshots
- [x] Make sure the entire test suite is passing
- [x] Make sure there are no changes in the ecosystem checks
- [x] Run the fuzzer on the parser
- [x] Run this change on dozens of open-source projects
### Running this change on dozens of open-source projects
Refer to the PR description to get the list of open source projects used
for testing.
Now, the following tests were done between `main` and this branch:
1. Compare the output of `--select=E999` (syntax errors)
2. Compare the output of default rule selection
3. Compare the output of `--select=ALL`
**Conclusion: all output were same**
## What's next?
The next step is to introduce re-lexing logic and update the parser to
feed the recovery information to the lexer so that it can emit the
correct token. This moves us one step closer to having error resilience
in the parser and provides Ruff the possibility to lint even if the
source code contains syntax errors.
## Summary
This moves the string-prefix enumerations in `ruff_python_ast` to a
separate submodule. I think this helps clarify that these prefixes are
purely abstract: they only depend on each other, and do not depend on
any of the other code in `nodes.rs` in any way. Moreover, while various
AST nodes _use_ them, they're not really nodes themselves, so they feel
slightly out of place in `nodes.rs`.
I considered moving all of them to `str.rs`, but it felt like enough
code that it could be a separate submodule.
## Test Plan
`cargo test`
## Summary
This PR renames `AnyStringKind` to `AnyStringFlags` and `AnyStringFlags`
to `AnyStringFlagsInner`.
The main motivation is to have consistent usage of "kind" and "flags".
For each string kind, it's "flags" like `StringLiteralFlags`,
`BytesLiteralFlags`, and `FStringFlags` but it was `AnyStringKind` for
the "any" variant.
## Summary
This PR fixes the bug where the formatter would format an f-string and
could potentially change the AST.
For a triple-quoted f-string, the element can't be formatted into
multiline if it has a format specifier because otherwise the newline
would be treated as part of the format specifier.
Given the following f-string:
```python
f"""aaaaaaaaaaaaaaaa bbbbbbbbbbbbbbbbbb ccccccccccc {
variable:.3f} ddddddddddddddd eeeeeeee"""
```
The formatter sees that the f-string is already multiline so it assumes
that it can contain line breaks i.e., broken into multiple lines. But,
in this specific case we can't format it as:
```python
f"""aaaaaaaaaaaaaaaa bbbbbbbbbbbbbbbbbb ccccccccccc {
variable:.3f
} ddddddddddddddd eeeeeeee"""
```
Because the format specifier string would become ".3f\n", which is not
the original string (`.3f`).
If the original source code already contained a newline, they'll be
preserved. For example:
```python
f"""aaaaaaaaaaaaaaaa bbbbbbbbbbbbbbbbbb ccccccccccc {
variable:.3f
} ddddddddddddddd eeeeeeee"""
```
The above will be formatted as:
```py
f"""aaaaaaaaaaaaaaaa bbbbbbbbbbbbbbbbbb ccccccccccc {variable:.3f
} ddddddddddddddd eeeeeeee"""
```
Note that the newline after `.3f` is part of the format specifier which
needs to be preserved.
The Python version is irrelevant in this case.
fixes: #10040
## Test Plan
Add some test cases to verify this behavior.
## Summary
_This is preview only feature and is available using the `--preview`
command-line flag._
With the implementation of [PEP 701] in Python 3.12, f-strings can now
be broken into multiple lines, can contain comments, and can re-use the
same quote character. Currently, no other Python formatter formats the
f-strings so there's some discussion which needs to happen in defining
the style used for f-string formatting. Relevant discussion:
https://github.com/astral-sh/ruff/discussions/9785
The goal for this PR is to add minimal support for f-string formatting.
This would be to format expression within the replacement field without
introducing any major style changes.
### Newlines
The heuristics for adding newline is similar to that of
[Prettier](https://prettier.io/docs/en/next/rationale.html#template-literals)
where the formatter would only split an expression in the replacement
field across multiple lines if there was already a line break within the
replacement field.
In other words, the formatter would not add any newlines unless they
were already present i.e., they were added by the user. This makes
breaking any expression inside an f-string optional and in control of
the user. For example,
```python
# We wouldn't break this
aaaaaaaaaaa = f"asaaaaaaaaaaaaaaaa { aaaaaaaaaaaa + bbbbbbbbbbbb + ccccccccccccccc } cccccccccc"
# But, we would break the following as there's already a newline
aaaaaaaaaaa = f"asaaaaaaaaaaaaaaaa {
aaaaaaaaaaaa + bbbbbbbbbbbb + ccccccccccccccc } cccccccccc"
```
If there are comments in any of the replacement field of the f-string,
then it will always be a multi-line f-string in which case the formatter
would prefer to break expressions i.e., introduce newlines. For example,
```python
x = f"{ # comment
a }"
```
### Quotes
The logic for formatting quotes remains unchanged. The existing logic is
used to determine the necessary quote char and is used accordingly.
Now, if the expression inside an f-string is itself a string like, then
we need to make sure to preserve the existing quote and not change it to
the preferred quote unless it's 3.12. For example,
```python
f"outer {'inner'} outer"
# For pre 3.12, preserve the single quote
f"outer {'inner'} outer"
# While for 3.12 and later, the quotes can be changed
f"outer {"inner"} outer"
```
But, for triple-quoted strings, we can re-use the same quote char unless
the inner string is itself a triple-quoted string.
```python
f"""outer {"inner"} outer""" # valid
f"""outer {'''inner'''} outer""" # preserve the single quote char for the inner string
```
### Debug expressions
If debug expressions are present in the replacement field of a f-string,
then the whitespace needs to be preserved as they will be rendered as it
is (for example, `f"{ x = }"`. If there are any nested f-strings, then
the whitespace in them needs to be preserved as well which means that
we'll stop formatting the f-string as soon as we encounter a debug
expression.
```python
f"outer { x = !s :.3f}"
# ^^
# We can remove these whitespaces
```
Now, the whitespace doesn't need to be preserved around conversion spec
and format specifiers, so we'll format them as usual but we won't be
formatting any nested f-string within the format specifier.
### Miscellaneous
- The
[`hug_parens_with_braces_and_square_brackets`](https://github.com/astral-sh/ruff/issues/8279)
preview style isn't implemented w.r.t. the f-string curly braces.
- The
[indentation](https://github.com/astral-sh/ruff/discussions/9785#discussioncomment-8470590)
is always relative to the f-string containing statement
## Test Plan
* Add new test cases
* Review existing snapshot changes
* Review the ecosystem changes
[PEP 701]: https://peps.python.org/pep-0701/
## Summary
This PR is a small refactor to extract out the logic for normalizing
string in the formatter from the `StringPart` struct. It also separates
the quote selection into a separate method on the new
`StringNormalizer`. Both of these will help in the f-string formatting
to use `StringPart` and `choose_quotes` irrespective of normalization.
The reason for having separate quote selection and normalization step is
so that the f-string formatting can perform quote selection on its own.
Unlike string and byte literals, the f-string formatting would require
that the normalization happens only for the literal elements of it i.e.,
the "foo" and "bar" in `f"foo {x + y} bar"`. This will automatically be
handled by the already separate `normalize_string` function.
Another use-case in the f-string formatting is to extract out the
relevant information from the `StringPart` like quotes and prefix which
is to be passed as context while formatting each element of an f-string.
## Test Plan
Ensure that clippy is happy and all tests pass.