## Summary
Currently our diagnostic only covers the range of the thing being
subscripted:
<img width="1702" height="312" alt="image"
src="https://github.com/user-attachments/assets/7e630431-e846-46ca-93c1-139f11aaba11"
/>
But it should probably cover the _whole_ subscript expression (arguably
the more "incorrect" bit is the `["foo"]` part of this expression, not
the `x` part of this expression!)
## Test Plan
Added a snapshot
Co-authored-by: Brent Westbrook
<36778786+ntBre@users.noreply.github.com>
## Summary
Further improve subscript assignment diagnostics, especially for
`dict`s:
```py
config: dict[str, int] = {}
config["retries"] = "three"
```
<img width="1276" height="274" alt="image"
src="https://github.com/user-attachments/assets/9762c733-8d1c-4a57-8c8a-99825071dc7d"
/>
I have many more ideas, but this looks like a reasonable first step.
Thank you @AlexWaygood for some of the suggestions here.
## Test Plan
Update tests
## Summary
We synthesize a (potentially large) set of `__setitem__` overloads for
every item in a `TypedDict`. Previously, validation of subscript
assignments on `TypedDict`s relied on actually calling `__setitem__`
with the provided key and value types, which implied that we needed to
do the full overload call evaluation for this large set of overloads.
This PR improves the performance of subscript assignment checks on
`TypedDict`s by validating the assignment directly instead of calling
`__setitem__`.
This PR also adds better handling for assignments to subscripts on union
and intersection types (but does not attempt to make it perfect). It
achieves this by distributing the check over unions and intersections,
instead of calling `__setitem__` on the union/intersection directly. We
already do something similar when validating *attribute* assignments.
## Ecosystem impact
* A lot of diagnostics change their rule type, and/or split into
multiple diagnostics. The new version is more verbose, but easier to
understand, in my opinion
* Almost all of the invalid-key diagnostics come from pydantic, and they
should all go away (including many more) when we implement
https://github.com/astral-sh/ty/issues/1479
* Everything else looks correct to me. There may be some new diagnostics
due to the fact that we now check intersections.
## Test Plan
New Markdown tests.
## Summary
Add (snapshot) tests for subscript assignment diagnostics. This is
mainly intended to establish a baseline before I hope to improve some of
these messages.
## Summary
Part of https://github.com/astral-sh/ty/issues/168. Infer more precise types for collection literals (currently, only `list` and `set`). For example,
```py
x = [1, 2, 3] # revealed: list[Unknown | int]
y: list[int] = [1, 2, 3] # revealed: list[int]
```
This could easily be extended to `dict` literals, but I am intentionally limiting scope for now.
## Summary
Adds validation to subscript assignment expressions.
```py
class Foo: ...
class Bar:
__setattr__ = None
class Baz:
def __setitem__(self, index: str, value: int) -> None:
pass
# We now emit a diagnostic on these statements
Foo()[1] = 2
Bar()[1] = 2
Baz()[1] = 2
```
Also improves error messages on invalid `__getitem__` expressions
## Test Plan
Update mdtests and add more to `subscript/instance.md`
---------
Co-authored-by: David Peter <sharkdp@users.noreply.github.com>
Co-authored-by: David Peter <mail@david-peter.de>
Summary
--
Fixes#19640. I'm not sure these are the exact fixes we really want, but
I
reproduced the issue in a 32-bit Docker container and tracked down the
causes,
so I figured I'd open a PR.
As I commented on the issue, the `goto_references` test depends on the
iteration
order of the files in an `FxHashSet` in `Indexed`. In this case, we can
just
sort the output in test code.
Similarly, the tuple case depended on the order of overloads inserted in
an
`FxHashMap`. `FxIndexMap` seemed like a convenient drop-in replacement,
but I
don't know if that will have other detrimental effects. I did have to
change the
assertion for the tuple test, but I think it should now be stable across
architectures.
Test Plan
--
Running the tests in the aforementioned Docker container
## Summary
Note this modifies the diagnostics a bit. Previously performing
subscript access on something like `NotSubscriptable1 |
NotSubscriptable2` would report the full type as not being
subscriptable:
```
[non-subscriptable] "Cannot subscript object of type `NotSubscriptable1 | NotSubscriptable2` with no `__getitem__` method"
```
Now each erroneous constituent has a separate error:
```
[non-subscriptable] "Cannot subscript object of type `NotSubscriptable2` with no `__getitem__` method"
[non-subscriptable] "Cannot subscript object of type `NotSubscriptable1` with no `__getitem__` method"
```
Closes https://github.com/astral-sh/ty/issues/625
## Test Plan
mdtest
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
We already had support for homogeneous tuples (`tuple[int, ...]`). This
PR extends this to also support mixed tuples (`tuple[str, str,
*tuple[int, ...], str str]`).
A mixed tuple consists of a fixed-length (possibly empty) prefix and
suffix, and a variable-length portion in the middle. Every element of
the variable-length portion must be of the same type. A homogeneous
tuple is then just a mixed tuple with an empty prefix and suffix.
The new data representation uses different Rust types for a fixed-length
(aka heterogeneous) tuple. Another option would have been to use the
`VariableLengthTuple` representation for all tuples, and to wrap the
"variable + suffix" portion in an `Option`. I don't think that would
simplify the method implementations much, though, since we would still
have a 2×2 case analysis for most of them.
One wrinkle is that the definition of the `tuple` class in the typeshed
has a single typevar, and canonically represents a homogeneous tuple.
When getting the class of a tuple instance, that means that we have to
summarize our detailed mixed tuple type information into its
"homogeneous supertype". (We were already doing this for heterogeneous
types.)
A similar thing happens when concatenating two mixed tuples: the
variable-length portion and suffix of the LHS, and the prefix and
variable-length portion of the RHS, all get unioned into the
variable-length portion of the result. The LHS prefix and RHS suffix
carry through unchanged.
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
## Summary
It doesn't seem to be necessary for our generics implementation to carry
the `GenericContext` in the `ClassBase` variants. Removing it simplifies
the code, fixes many TODOs about `Generic` or `Protocol` appearing
multiple times in MROs when each should only appear at most once, and
allows us to more accurately detect runtime errors that occur due to
`Generic` or `Protocol` appearing multiple times in a class's bases.
In order to remove the `GenericContext` from the `ClassBase` variant, it
turns out to be necessary to emulate
`typing._GenericAlias.__mro_entries__`, or we end up with a large number
of false-positive `inconsistent-mro` errors. This PR therefore also does
that.
Lastly, this PR fixes the inferred MROs of PEP-695 generic classes,
which implicitly inherit from `Generic` even if they have no explicit
bases.
## Test Plan
mdtests
## Summary
Resolves [#461](https://github.com/astral-sh/ty/issues/461).
ty was hardcoded to infer `BytesLiteral` types for integer indexing into
`BytesLiteral`. It will now infer `IntLiteral` types instead.
## Test Plan
Markdown tests.