## Summary
Setting `TY_MEMORY_REPORT=full` will generate and print a memory usage
report to the CLI after a `ty check` run:
```
=======SALSA STRUCTS=======
`Definition` metadata=7.24MB fields=17.38MB count=181062
`Expression` metadata=4.45MB fields=5.94MB count=92804
`member_lookup_with_policy_::interned_arguments` metadata=1.97MB fields=2.25MB count=35176
...
=======SALSA QUERIES=======
`File -> ty_python_semantic::semantic_index::SemanticIndex`
metadata=11.46MB fields=88.86MB count=1638
`Definition -> ty_python_semantic::types::infer::TypeInference`
metadata=24.52MB fields=86.68MB count=146018
`File -> ruff_db::parsed::ParsedModule`
metadata=0.12MB fields=69.06MB count=1642
...
=======SALSA SUMMARY=======
TOTAL MEMORY USAGE: 577.61MB
struct metadata = 29.00MB
struct fields = 35.68MB
memo metadata = 103.87MB
memo fields = 409.06MB
```
Eventually, we should integrate these numbers into CI in some form. The
one limitation currently is that heap allocations in salsa structs (e.g.
interned values) are not tracked, but memoized values should have full
coverage. We may also want a peak memory usage counter (that accounts
for non-salsa memory), but that is relatively simple to profile manually
(e.g. `time -v ty check`) and would require a compile-time option to
avoid runtime overhead.
Previously, completions were based on just returning every identifier
parsed in the current Python file. In this commit, we change it to
identify an expression under the cursor and then return all symbols
available to the scope containing that expression.
This is still returning too much, and also, in some cases, not enough.
Namely, it doesn't really take the specific context into account other
than scope. But this does improve on the status quo. For example:
def foo(): ...
def bar():
def fast(): ...
def foofoo(): ...
f<CURSOR>
When asking for completions here, the LSP will no longer include `fast`
as a possible completion in this context.
Ref https://github.com/astral-sh/ty/issues/86
## Summary
Transition to using coarse-grained tracked structs (depends on
https://github.com/salsa-rs/salsa/pull/657). For now, this PR doesn't
add any `#[tracked]` fields, meaning that any changes cause the entire
struct to be invalidated. It also changes `AstNodeRef` to be
compared/hashed by pointer address, instead of performing a deep AST
comparison.
## Test Plan
This yields a 10-15% improvement on my machine (though weirdly some runs
were 5-10% without being flagged as inconsistent by criterion, is there
some non-determinism involved?). It's possible that some of this is
unrelated, I'll try applying the patch to the current salsa version to
make sure.
---------
Co-authored-by: Micha Reiser <micha@reiser.io>
## Summary
When you try to remove an internal representation leaking into another
type and end up rewriting a simple version of `smallvec`.
The goal of this PR is to replace the `Box<[&'a str]>` with
`Box<QualifiedName>` to avoid that the internal `QualifiedName`
representation leaks (and it gives us a nicer API too). However, doing
this when `QualifiedName` uses `SmallVec` internally gives us all sort
of funny lifetime errors. I was lost but @BurntSushi came to rescue me.
He figured out that `smallvec` has a variance problem which is already
tracked in https://github.com/servo/rust-smallvec/issues/146
To fix the variants problem, I could use the smallvec-2-alpha-4 or
implement our own smallvec. I went with implementing our own small vec
for this specific problem. It obviously isn't as sophisticated as
smallvec (only uses safe code), e.g. it doesn't perform any size
optimizations, but it does its job.
Other changes:
* Removed `Imported::qualified_name` (the version that returns a
`String`). This can be replaced by calling `ToString` on the qualified
name.
* Renamed `Imported::call_path` to `qualified_name` and changed its
return type to `&QualifiedName`.
* Renamed `QualifiedName::imported` to `user_defined` which is the more
common term when talking about builtins vs the rest/user defined
functions.
## Test plan
`cargo test`
## Summary
Charlie can probably explain this better than I but it turns out,
`CallPath` is used for two different things:
* To represent unqualified names like `version` where `version` can be a
local variable or imported (e.g. `from sys import version` where the
full qualified name is `sys.version`)
* To represent resolved, full qualified names
This PR splits `CallPath` into two types to make this destinction clear.
> Note: I haven't renamed all `call_path` variables to `qualified_name`
or `unqualified_name`. I can do that if that's welcomed but I first want
to get feedback on the approach and naming overall.
## Test Plan
`cargo test`
2024-03-04 09:06:51 +00:00
Renamed from crates/ruff_python_ast/src/call_path.rs (Browse further)