If a typevar is declared as having a default, we shouldn't require a
type to be specified for that typevar when explicitly specializing a
generic class:
```py
class WithDefault[T, U = int]: ...
reveal_type(WithDefault[str]()) # revealed: WithDefault[str, int]
```
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
Fixes
https://github.com/astral-sh/ruff/pull/17832#issuecomment-2851224968. We
had a comment that we did not need to apply specializations to generic
aliases, or to the bound `self` of a bound method, because they were
already specialized. But they might be specialized with a type variable,
which _does_ need to be specialized, in the case of a "multi-step"
specialization, such as:
```py
class LinkedList[T]: ...
class C[U]:
def method(self) -> LinkedList[U]:
return LinkedList[U]()
```
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
This fixes cycle panics in several ecosystem projects (moved to
`good.txt` in a following PR
https://github.com/astral-sh/ruff/pull/17834 because our mypy-primer job
doesn't handle it well if we move projects to `good.txt` in the same PR
that fixes `ty` to handle them), as well as in the minimal case in the
added mdtest. It also fixes a number of panicking fuzzer seeds. It
doesn't appear to cause any regression in any ecosystem project or any
fuzzer seed.
Re: #17526
## Summary
Add integration tests for Python Semantic Syntax for
`InvalidStarExpression`, `DuplicateMatchKey`, and
`DuplicateMatchClassAttribute`.
## Note
- Red knot integration tests for `DuplicateMatchKey` exist already in
line 89-101.
<!-- What's the purpose of the change? What does it do, and why? -->
## Test Plan
This is a test.
<!-- How was it tested? -->
## Summary
When entering an `infer_expression_types` cycle from
`TypeInferenceBuilder::infer_standalone_expression`, we might get back a
`TypeInference::cycle_fallback(…)` that doesn't actually contain any new
types, but instead it contains a `cycle_fallback_type` which is set to
`Some(Type::Never)`. When calling `self.extend(…)`, we therefore don't
really pull in a type for the expression we're interested in. This
caused us to panic if we tried to call `self.expression_type(…)` after
`self.extend(…)`.
The proposed fix here is to retrieve that type from the nested
`TypeInferenceBuilder` directly, which will correctly fall back to
`cycle_fallback_type`.
## Details
I minimized the second example from #17792 a bit further and used this
example for debugging:
```py
from __future__ import annotations
class C: ...
def f(arg: C):
pass
x, _ = f(1)
assert x
```
This is self-referential because when we check the assignment statement
`x, _ = f(1)`, we need to look up the signature of `f`. Since evaluation
of annotations is deferred, we look up the public type of `C` for the
`arg` parameter. The public use of `C` is visibility-constraint by "`x`"
via the `assert` statement. While evaluating this constraint, we need to
look up the type of `x`, which in turn leads us back to the `x, _ =
f(1)` definition.
The reason why this only showed up in the relatively peculiar case with
unpack assignments is the code here:
78b4c3ccf1/crates/ty_python_semantic/src/types/infer.rs (L2709-L2718)
For a non-unpack assignment like `x = f(1)`, we would not try to infer
the right-hand side eagerly. Instead, we would enter a
`infer_definition_types` cycle that handles the situation correctly. For
unpack assignments, however, we try to infer the type of `value`
(`f(1)`) and therefore enter the cycle via `standalone_expression_type
=> infer_expression_type`.
closes#17792
## Test Plan
* New regression test
* Made sure that we can now run successfully on scipy => see #17850