## Summary
This PR adds support for parsing and inferring types within string
annotations.
### Implementation (attempt 1)
This is preserved in
6217f48924.
The implementation here would separate the inference of string
annotations in the deferred query. This requires the following:
* Two ways of evaluating the deferred definitions - lazily and eagerly.
* An eager evaluation occurs right outside the definition query which in
this case would be in `binding_ty` and `declaration_ty`.
* A lazy evaluation occurs on demand like using the
`definition_expression_ty` to determine the function return type and
class bases.
* The above point means that when trying to get the binding type for a
variable in an annotated assignment, the definition query won't include
the type. So, it'll require going through the deferred query to get the
type.
This has the following limitations:
* Nested string annotations, although not necessarily a useful feature,
is difficult to implement unless we convert the implementation in an
infinite loop
* Partial string annotations require complex layout because inferring
the types for stringified and non-stringified parts of the annotation
are done in separate queries. This means we need to maintain additional
information
### Implementation (attempt 2)
This is the final diff in this PR.
The implementation here does the complete inference of string annotation
in the same definition query by maintaining certain state while trying
to infer different parts of an expression and take decisions
accordingly. These are:
* Allow names that are part of a string annotation to not exists in the
symbol table. For example, in `x: "Foo"`, if the "Foo" symbol is not
defined then it won't exists in the symbol table even though it's being
used. This is an invariant which is being allowed only for symbols in a
string annotation.
* Similarly, lookup name is updated to do the same and if the symbol
doesn't exists, then it's not bounded.
* Store the final type of a string annotation on the string expression
itself and not for any of the sub-expressions that are created after
parsing. This is because those sub-expressions won't exists in the
semantic index.
Design document:
https://www.notion.so/astral-sh/String-Annotations-12148797e1ca801197a9f146641e5b71?pvs=4Closes: #13796
## Test Plan
* Add various test cases in our markdown framework
* Run `red_knot` on LibCST (contains a lot of string annotations,
specifically
https://github.com/Instagram/LibCST/blob/main/libcst/matchers/_matcher_base.py),
FastAPI (good amount of annotated code including `typing.Literal`) and
compare against the `main` branch output
## Summary
Add a typed representation of function signatures (parameters and return
type) and infer it correctly from a function.
Convert existing usage of function return types to use the signature
representation.
This does not yet add inferred types for parameters within function body
scopes based on the annotations, but it should be easy to add as a next
step.
Part of #14161 and #13693.
## Test Plan
Added tests.
## Summary
This fixes several panics related to invalid assignment targets. All of
these led to some a crash, previously:
```py
(x.y := 1) # only name-expressions are valid targets of named expressions
([x, y] := [1, 2]) # same
(x, y): tuple[int, int] = (2, 3) # tuples are not valid targets for annotated assignments
(x, y) += 2 # tuples are not valid targets for augmented assignments
```
closes#14321closes#14322
## Test Plan
I symlinked four files from `crates/ruff_python_parser/resources` into
the red knot corpus, as they seemed like ideal test files for this exact
scenario. I think eventually, it might be a good idea to simply include *all*
invalid-syntax examples from the parser tests into red knots corpus (I believe
we're actually not too far from that goal). Or expand the scope of the corpus
test to this directory. Then we can get rid of these symlinks again.
## Summary
This avoids a panic inside `TypeInferenceBuilder::infer_type_parameters`
when encountering generic type aliases:
```py
type ListOrSet[T] = list[T] | set[T]
```
To fix this properly, we would have to treat type aliases as being their own
annotation scope [1]. The left hand side is a definition for the type parameter
`T` which is being used in the special annotation scope on the right hand side.
Similar to how it works for generic functions and classes.
[1] https://docs.python.org/3/reference/compound_stmts.html#generic-type-aliasescloses#14307
## Test Plan
Added new example to the corpus.
When we look up the types of class bases or keywords (`metaclass`), we
currently do this little dance: if there are type params, then look up
the type using `SemanticModel` in the type-params scope, if not, look up
the type directly in the definition's own scope, with support for
deferred types.
With inference of function parameter types, I'm now adding another case
of this same dance, so I'm motivated to make it a bit more ergonomic.
Add support to `definition_expression_ty` to handle any sub-expression
of a definition, whether it is in the definition's own scope or in a
type-params sub-scope.
Related to both #13693 and #14161.
## Summary
Use the memory address to uniquely identify AST nodes, instead of
relying on source range and kind. The latter fails for ASTs resulting
from invalid syntax examples. See #14313 for details.
Also results in a 1-2% speedup
(67349cf55f)
closes#14313
## Review
Here are the places where we use `NodeKey` directly or indirectly (via
`ExpressionNodeKey` or `DefinitionNodeKey`):
```rs
// semantic_index.rs
pub(crate) struct SemanticIndex<'db> {
// [...]
/// Map expressions to their corresponding scope.
scopes_by_expression: FxHashMap<ExpressionNodeKey, FileScopeId>,
/// Map from a node creating a definition to its definition.
definitions_by_node: FxHashMap<DefinitionNodeKey, Definition<'db>>,
/// Map from a standalone expression to its [`Expression`] ingredient.
expressions_by_node: FxHashMap<ExpressionNodeKey, Expression<'db>>,
// [...]
}
// semantic_index/builder.rs
pub(super) struct SemanticIndexBuilder<'db> {
// [...]
scopes_by_expression: FxHashMap<ExpressionNodeKey, FileScopeId>,
definitions_by_node: FxHashMap<ExpressionNodeKey, Definition<'db>>,
expressions_by_node: FxHashMap<ExpressionNodeKey, Expression<'db>>,
}
// semantic_index/ast_ids.rs
pub(crate) struct AstIds {
/// Maps expressions to their expression id.
expressions_map: FxHashMap<ExpressionNodeKey, ScopedExpressionId>,
/// Maps expressions which "use" a symbol (that is, [`ast::ExprName`]) to a use id.
uses_map: FxHashMap<ExpressionNodeKey, ScopedUseId>,
}
pub(super) struct AstIdsBuilder {
expressions_map: FxHashMap<ExpressionNodeKey, ScopedExpressionId>,
uses_map: FxHashMap<ExpressionNodeKey, ScopedUseId>,
}
```
## Test Plan
Added two failing examples to the corpus.
## Summary
Fixes a failing debug assertion that triggers for the following code:
```py
match some_int:
case x:=2:
pass
```
closes#14305
## Test Plan
Added problematic code example to corpus.
## Summary
- Emit diagnostics when looking up (possibly) unbound attributes
- More explicit test assertions for unbound symbols
- Review remaining call sites of `Symbol::ignore_possibly_unbound`. Most
of them are something like `builtins_symbol(self.db,
"Ellipsis").ignore_possibly_unbound().unwrap_or(Type::Unknown)` which
look okay to me, unless we want to emit additional diagnostics. There is
one additional case in enum literal handling, which has a TODO comment
anyway.
part of #14022
## Test Plan
New MD tests for (possibly) unbound attributes.
## Summary
This adds a new diagnostic when possibly unbound symbols are imported.
The `TODO` comment had a question mark, do I'm not sure if this is
really something that we want.
This does not touch the un*declared* case, yet.
relates to: #14022
## Test Plan
Updated already existing tests with new diagnostics
## Summary
Apart from one small functional change, this is mostly a refactoring of
the `Symbol` API:
- Rename `as_type` to the more explicit `ignore_possibly_unbound`, no
functional change
- Remove `unwrap_or_unknown` in favor of the more explicit
`.ignore_possibly_unbound().unwrap_or(Type::Unknown)`, no functional
change
- Consistently call it "possibly unbound" (not "may be unbound")
- Rename `replace_unbound_with` to `or_fall_back_to` and properly handle
boundness of the fall back. This is the only functional change (did not
have any impact on existing tests).
relates to: #14022
## Test Plan
New unit tests for `Symbol::or_fall_back_to`
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
## Summary
Create definitions and infer types for PEP 695 type variables.
This just gives us the type of the type variable itself (the type of `T`
as a runtime object in the body of `def f[T](): ...`), with special
handling for its attributes `__name__`, `__bound__`, `__constraints__`,
and `__default__`. Mostly the support for these attributes exists
because it is easy to implement and allows testing that we are
internally representing the typevar correctly.
This PR doesn't yet have support for interpreting a typevar as a type
annotation, which is of course the primary use of a typevar. But the
information we store in the typevar's type in this PR gives us
everything we need to handle it correctly in a future PR when the
typevar appears in an annotation.
## Test Plan
Added mdtest.
## Summary
`Ty::BuiltinClassLiteral(…)` is a sub~~class~~type of
`Ty::BuiltinInstance("type")`, so it can't be disjoint from it.
## Test Plan
New `is_not_disjoint_from` test case
## Summary
Fix `Type::is_assignable_to` for union types on the left hand side (of
`.is_assignable_to`; or the right hand side of the `… = …` assignment):
`Literal[1, 2]` should be assignable to `int`.
## Test Plan
New unit tests that were previously failing.
## Summary
Minor fix to `Type::is_subtype_of` to make sure that Boolean literals
are subtypes of `int`, to match runtime semantics.
Found this while doing some property-testing experiments [1].
[1] https://github.com/astral-sh/ruff/pull/14178
## Test Plan
New unit test.
## Summary
Fixes#14114. I don't think I can really describe the problems with our
current architecture (and therefore the motivations for this PR) any
better than @carljm did in that issue, so I'll just copy it out here!
---
We currently represent "known instances" (e.g. special forms like
`typing.Literal`, which are an instance of `typing._SpecialForm`, but
need to be handled differently from other instances of
`typing._SpecialForm`) as an `InstanceType` with a `known` field that is
`Some(...)`.
This makes it easy to handle a known instance as if it were a regular
instance type (by ignoring the `known` field), and in some cases (e.g.
`Type::member`) that is correct and convenient. But in other cases (e.g.
`Type::is_equivalent_to`) it is not correct, and we currently have a bug
that we would consider the known-instance type of `typing.Literal` as
equivalent to the general instance type for `typing._SpecialForm`, and
we would fail to consider it a singleton type or a single-valued type
(even though it is both.)
An instance type with `known.is_some()` is semantically quite different
from an instance type with `known.is_none()`. The former is a singleton
type that represents exactly one runtime object; the latter is an open
type that represents many runtime objects, including instances of
unknown subclasses. It is too error-prone to represent these
very-different types as a single `Type` variant. We should instead
introduce a dedicated `Type::KnownInstance` variant and force ourselves
to handle these explicitly in all `Type` variant matches.
## Possible followups
There is still a little bit of awkwardness in our current design in some
places, in that we first infer the symbol `typing.Literal` as a
`_SpecialForm` instance, and then later convert that instance-type into
a known-instance-type. We could also use this `KnownInstanceType` enum
to account for other special runtime symbols such as `builtins.Ellipsis`
or `builtins.NotImplemented`.
I think these might be worth pursuing, but I didn't do them here as they
didn't seem essential right now, and I wanted to keep the diff
relatively minimal.
## Test Plan
`cargo test -p red_knot_python_semantic`. New unit tests added for
`Type::is_subtype_of`.
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
## Summary
This adds type inference for comparison expressions involving
intersection types.
For example:
```py
x = get_random_int()
if x != 42:
reveal_type(x == 42) # revealed: Literal[False]
reveal_type(x == 43) # bool
```
closes#13854
## Test Plan
New Markdown-based tests.
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
## Summary
- Get rid of `Symbol::unwrap_or` (unclear semantics, not needed anymore)
- Introduce `Type::call_dunder`
- Emit new diagnostic for possibly-unbound `__iter__` methods
- Better diagnostics for callables with possibly-unbound /
possibly-non-callable `__call__` methods
part of: #14022closes#14016
## Test Plan
- Updated test for iterables with possibly-unbound `__iter__` methods.
- New tests for callables
## Summary
- Adds basic support for `type[C]` as a red knot `Type`. Some things
might not be supported yet, like `type[Any]`.
- Adds type narrowing for `issubclass` checks.
closes#14117
## Test Plan
New Markdown-based tests
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
## Summary
I mirrored some of the idioms that @AlexWaygood used in the MRO work.
Closes https://github.com/astral-sh/ruff/issues/14096.
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>