# Protocols > [!NOTE] > > See also: > > - The [typing specification section on protocols][typing_spec_protocols] > - The many [protocol conformance tests] provided by the Typing Council for type checkers > - Mypy's [documentation][mypy_protocol_docs] and [tests][mypy_protocol_tests] for protocols Most types in Python are *nominal* types: a fully static nominal type `X` is only a subtype of another fully static nominal type `Y` if the class `X` is a subclass of the class `Y`. `typing.Protocol` (or its backport, `typing_extensions.Protocol`) can be used to define *structural* types, on the other hand: a type which is defined by its properties and behaviour. ## Defining a protocol ```toml [environment] python-version = "3.12" ``` A protocol is defined by inheriting from the `Protocol` class, which is annotated as an instance of `_SpecialForm` in typeshed's stubs. ```py from typing import Protocol class MyProtocol(Protocol): ... reveal_type(MyProtocol.__mro__) # revealed: tuple[, typing.Protocol, typing.Generic, ] ``` Just like for any other class base, it is an error for `Protocol` to appear multiple times in a class's bases: ```py class Foo(Protocol, Protocol): ... # error: [duplicate-base] reveal_type(Foo.__mro__) # revealed: tuple[, Unknown, ] ``` Protocols can also be generic, either by including `Generic[]` in the bases list, subscripting `Protocol` directly in the bases list, using PEP-695 type parameters, or some combination of the above: ```py from typing import TypeVar, Generic T = TypeVar("T") class Bar0(Protocol[T]): x: T class Bar1(Protocol[T], Generic[T]): x: T class Bar2[T](Protocol): x: T # error: [invalid-generic-class] "Cannot both inherit from subscripted `typing.Protocol` and use PEP 695 type variables" class Bar3[T](Protocol[T]): x: T ``` It's an error to include both bare `Protocol` and subscripted `Protocol[]` in the bases list simultaneously: ```py class DuplicateBases(Protocol, Protocol[T]): # error: [duplicate-base] x: T # revealed: tuple[, Unknown, ] reveal_type(DuplicateBases.__mro__) ``` The introspection helper `typing(_extensions).is_protocol` can be used to verify whether a class is a protocol class or not: ```py from typing_extensions import is_protocol reveal_type(is_protocol(MyProtocol)) # revealed: Literal[True] reveal_type(is_protocol(Bar0)) # revealed: Literal[True] reveal_type(is_protocol(Bar1)) # revealed: Literal[True] reveal_type(is_protocol(Bar2)) # revealed: Literal[True] reveal_type(is_protocol(Bar3)) # revealed: Literal[True] class NotAProtocol: ... reveal_type(is_protocol(NotAProtocol)) # revealed: Literal[False] ``` A type checker should follow the typeshed stubs if a non-class is passed in, and typeshed's stubs indicate that the argument passed in must be an instance of `type`. ```py # We could also reasonably infer `Literal[False]` here, but it probably doesn't matter that much: # error: [invalid-argument-type] reveal_type(is_protocol("not a class")) # revealed: bool ``` For a class to be considered a protocol class, it must have `Protocol` directly in its bases tuple: it is not sufficient for it to have `Protocol` in its MRO. ```py class SubclassOfMyProtocol(MyProtocol): ... # revealed: tuple[, , typing.Protocol, typing.Generic, ] reveal_type(SubclassOfMyProtocol.__mro__) reveal_type(is_protocol(SubclassOfMyProtocol)) # revealed: Literal[False] ``` A protocol class may inherit from other protocols, however, as long as it re-inherits from `Protocol`: ```py class SubProtocol(MyProtocol, Protocol): ... reveal_type(is_protocol(SubProtocol)) # revealed: Literal[True] class OtherProtocol(Protocol): some_attribute: str class ComplexInheritance(SubProtocol, OtherProtocol, Protocol): ... # revealed: tuple[, , , , typing.Protocol, typing.Generic, ] reveal_type(ComplexInheritance.__mro__) reveal_type(is_protocol(ComplexInheritance)) # revealed: Literal[True] ``` If `Protocol` is present in the bases tuple, all other bases in the tuple must be protocol classes, or `TypeError` is raised at runtime when the class is created. ```py # error: [invalid-protocol] "Protocol class `Invalid` cannot inherit from non-protocol class `NotAProtocol`" class Invalid(NotAProtocol, Protocol): ... # revealed: tuple[, , typing.Protocol, typing.Generic, ] reveal_type(Invalid.__mro__) # error: [invalid-protocol] "Protocol class `AlsoInvalid` cannot inherit from non-protocol class `NotAProtocol`" class AlsoInvalid(MyProtocol, OtherProtocol, NotAProtocol, Protocol): ... # revealed: tuple[, , , , typing.Protocol, typing.Generic, ] reveal_type(AlsoInvalid.__mro__) ``` But two exceptions to this rule are `object` and `Generic`: ```py from typing import TypeVar, Generic T = TypeVar("T") # Note: pyright and pyrefly do not consider this to be a valid `Protocol` class, # but mypy does (and has an explicit test for this behaviour). Mypy was the # reference implementation for PEP-544, and its behaviour also matches the CPython # runtime, so we choose to follow its behaviour here rather than that of the other # type checkers. class Fine(Protocol, object): ... reveal_type(Fine.__mro__) # revealed: tuple[, typing.Protocol, typing.Generic, ] class StillFine(Protocol, Generic[T], object): ... class EvenThis[T](Protocol, object): ... class OrThis(Protocol[T], Generic[T]): ... class AndThis(Protocol[T], Generic[T], object): ... ``` And multiple inheritance from a mix of protocol and non-protocol classes is fine as long as `Protocol` itself is not in the bases list: ```py class FineAndDandy(MyProtocol, OtherProtocol, NotAProtocol): ... # revealed: tuple[, , , typing.Protocol, typing.Generic, , ] reveal_type(FineAndDandy.__mro__) ``` But if `Protocol` is not present in the bases list, the resulting class doesn't count as a protocol class anymore: ```py reveal_type(is_protocol(FineAndDandy)) # revealed: Literal[False] ``` A class does not *have* to inherit from a protocol class in order for it to be considered a subtype of that protocol (more on that below). However, classes that explicitly inherit from a protocol class are understood as subtypes of that protocol, the same as with nominal types: ```py from ty_extensions import static_assert, is_subtype_of, is_assignable_to static_assert(is_subtype_of(SubclassOfMyProtocol, MyProtocol)) static_assert(is_assignable_to(SubclassOfMyProtocol, MyProtocol)) static_assert(is_subtype_of(SubProtocol, MyProtocol)) static_assert(is_assignable_to(SubProtocol, MyProtocol)) static_assert(is_subtype_of(ComplexInheritance, SubProtocol)) static_assert(is_assignable_to(ComplexInheritance, SubProtocol)) static_assert(is_subtype_of(ComplexInheritance, OtherProtocol)) static_assert(is_assignable_to(ComplexInheritance, SubProtocol)) static_assert(is_subtype_of(FineAndDandy, MyProtocol)) static_assert(is_assignable_to(FineAndDandy, MyProtocol)) static_assert(is_subtype_of(FineAndDandy, OtherProtocol)) static_assert(is_assignable_to(FineAndDandy, OtherProtocol)) ``` Note, however, that `Protocol` itself is not a type, so it is an error to pass it to `is_subtype_of` or `is_assignable_to`: ```py is_subtype_of(MyProtocol, Protocol) # error: [invalid-type-form] is_assignable_to(MyProtocol, Protocol) # error: [invalid-type-form] ``` And it is also an error to use `Protocol` in type expressions: ```py # fmt: off def f( x: Protocol, # error: [invalid-type-form] "`typing.Protocol` is not allowed in type expressions" y: type[Protocol], # TODO: should emit `[invalid-type-form]` here too ): reveal_type(x) # revealed: Unknown # TODO: should be `type[Unknown]` reveal_type(y) # revealed: @Todo(unsupported type[X] special form) # fmt: on ``` Nonetheless, `Protocol` can still be used as the second argument to `issubclass()` at runtime: ```py # Could also be `Literal[True]`, but `bool` is fine: reveal_type(issubclass(MyProtocol, Protocol)) # revealed: bool ``` ## `typing.Protocol` versus `typing_extensions.Protocol` `typing.Protocol` and its backport in `typing_extensions` should be treated as exactly equivalent. ```py import typing import typing_extensions from ty_extensions import static_assert, is_equivalent_to, TypeOf static_assert(is_equivalent_to(TypeOf[typing.Protocol], TypeOf[typing_extensions.Protocol])) static_assert(is_equivalent_to(int | str | TypeOf[typing.Protocol], TypeOf[typing_extensions.Protocol] | str | int)) class Foo(typing.Protocol): x: int class Bar(typing_extensions.Protocol): x: int static_assert(typing_extensions.is_protocol(Foo)) static_assert(typing_extensions.is_protocol(Bar)) static_assert(is_equivalent_to(Foo, Bar)) ``` The same goes for `typing.runtime_checkable` and `typing_extensions.runtime_checkable`: ```py @typing_extensions.runtime_checkable class RuntimeCheckableFoo(typing.Protocol): x: int @typing.runtime_checkable class RuntimeCheckableBar(typing_extensions.Protocol): x: int static_assert(typing_extensions.is_protocol(RuntimeCheckableFoo)) static_assert(typing_extensions.is_protocol(RuntimeCheckableBar)) static_assert(is_equivalent_to(RuntimeCheckableFoo, RuntimeCheckableBar)) # These should not error because the protocols are decorated with `@runtime_checkable` isinstance(object(), RuntimeCheckableFoo) isinstance(object(), RuntimeCheckableBar) ``` However, we understand that they are not necessarily the same symbol at the same memory address at runtime -- these reveal `bool` rather than `Literal[True]` or `Literal[False]`, which would be incorrect: ```py reveal_type(typing.Protocol is typing_extensions.Protocol) # revealed: bool reveal_type(typing.Protocol is not typing_extensions.Protocol) # revealed: bool ``` ## Calls to protocol classes Neither `Protocol`, nor any protocol class, can be directly instantiated: ```toml [environment] python-version = "3.12" ``` ```py from typing_extensions import Protocol, reveal_type # error: [call-non-callable] reveal_type(Protocol()) # revealed: Unknown class MyProtocol(Protocol): x: int # error: [call-non-callable] "Cannot instantiate class `MyProtocol`" reveal_type(MyProtocol()) # revealed: MyProtocol class GenericProtocol[T](Protocol): x: T # error: [call-non-callable] "Cannot instantiate class `GenericProtocol`" reveal_type(GenericProtocol[int]()) # revealed: GenericProtocol[int] ``` But a non-protocol class can be instantiated, even if it has `Protocol` in its MRO: ```py class SubclassOfMyProtocol(MyProtocol): ... reveal_type(SubclassOfMyProtocol()) # revealed: SubclassOfMyProtocol class SubclassOfGenericProtocol[T](GenericProtocol[T]): ... reveal_type(SubclassOfGenericProtocol[int]()) # revealed: SubclassOfGenericProtocol[int] ``` And as a corollary, `type[MyProtocol]` can also be called: ```py def f(x: type[MyProtocol]): reveal_type(x()) # revealed: MyProtocol ``` ## Members of a protocol A protocol defines an interface through its *members*: if a protocol `Foo` has members `X` and `Y`, a type `Bar` can only be a subtype of `Foo` if inhabitants of `Bar` also have attributes `X` and `Y`. A protocol class defines its members through declarations in the class body. The members of a protocol can be introspected using the function `typing.get_protocol_members`, which is backported via `typing_extensions`. ```py from typing_extensions import Protocol, get_protocol_members class Foo(Protocol): x: int @property def y(self) -> str: return "y" @property def z(self) -> int: return 42 @z.setter def z(self, z: int) -> None: ... def method_member(self) -> bytes: return b"foo" # TODO: actually a frozenset (requires support for legacy generics) reveal_type(get_protocol_members(Foo)) # revealed: tuple[Literal["method_member"], Literal["x"], Literal["y"], Literal["z"]] ``` Certain special attributes and methods are not considered protocol members at runtime, and should not be considered protocol members by type checkers either: ```py class Lumberjack(Protocol): __slots__ = () __match_args__ = () x: int def __new__(cls, x: int) -> "Lumberjack": return object.__new__(cls) def __init__(self, x: int) -> None: self.x = x # TODO: actually a frozenset reveal_type(get_protocol_members(Lumberjack)) # revealed: tuple[Literal["x"]] ``` A sub-protocol inherits and extends the members of its superclass protocol(s): ```py class Bar(Protocol): spam: str class Baz(Bar, Protocol): ham: memoryview # TODO: actually a frozenset reveal_type(get_protocol_members(Baz)) # revealed: tuple[Literal["ham"], Literal["spam"]] class Baz2(Bar, Foo, Protocol): ... # TODO: actually a frozenset # revealed: tuple[Literal["method_member"], Literal["spam"], Literal["x"], Literal["y"], Literal["z"]] reveal_type(get_protocol_members(Baz2)) ``` ## Protocol members in statically known branches The list of protocol members does not include any members declared in branches that are statically known to be unreachable: ```toml [environment] python-version = "3.9" ``` ```py import sys from typing_extensions import Protocol, get_protocol_members class Foo(Protocol): if sys.version_info >= (3, 10): a: int b = 42 def c(self) -> None: ... else: d: int e = 56 def f(self) -> None: ... # TODO: actually a frozenset reveal_type(get_protocol_members(Foo)) # revealed: tuple[Literal["d"], Literal["e"], Literal["f"]] ``` ## Invalid calls to `get_protocol_members()` Calling `get_protocol_members` on a non-protocol class raises an error at runtime: ```toml [environment] python-version = "3.12" ``` ```py from typing_extensions import Protocol, get_protocol_members class NotAProtocol: ... get_protocol_members(NotAProtocol) # error: [invalid-argument-type] class AlsoNotAProtocol(NotAProtocol, object): ... get_protocol_members(AlsoNotAProtocol) # error: [invalid-argument-type] ``` The original class object must be passed to the function; a specialised version of a generic version does not suffice: ```py class GenericProtocol[T](Protocol): ... get_protocol_members(GenericProtocol[int]) # TODO: should emit a diagnostic here (https://github.com/astral-sh/ruff/issues/17549) ``` ## Subtyping of protocols with attribute members In the following example, the protocol class `HasX` defines an interface such that any other fully static type can be said to be a subtype of `HasX` if all inhabitants of that other type have a mutable `x` attribute of type `int`: ```toml [environment] python-version = "3.12" ``` ```py from typing import Protocol from ty_extensions import static_assert, is_assignable_to, is_subtype_of class HasX(Protocol): x: int class Foo: x: int static_assert(is_subtype_of(Foo, HasX)) static_assert(is_assignable_to(Foo, HasX)) class FooSub(Foo): ... static_assert(is_subtype_of(FooSub, HasX)) static_assert(is_assignable_to(FooSub, HasX)) class Bar: x: str # TODO: these should pass static_assert(not is_subtype_of(Bar, HasX)) # error: [static-assert-error] static_assert(not is_assignable_to(Bar, HasX)) # error: [static-assert-error] class Baz: y: int static_assert(not is_subtype_of(Baz, HasX)) static_assert(not is_assignable_to(Baz, HasX)) ``` Note that declaring an attribute member on a protocol mandates that the attribute must be mutable. A type with a read-only `x` property does not satisfy the `HasX` interface; nor does a type with a `Final` `x` attribute. The type of the attribute must also be treated as invariant due to the attribute's mutability: ```py from typing import Final class A: @property def x(self) -> int: return 42 # TODO: these should pass static_assert(not is_subtype_of(A, HasX)) # error: [static-assert-error] static_assert(not is_assignable_to(A, HasX)) # error: [static-assert-error] class B: x: Final = 42 # TODO: these should pass static_assert(not is_subtype_of(A, HasX)) # error: [static-assert-error] static_assert(not is_assignable_to(A, HasX)) # error: [static-assert-error] class IntSub(int): ... class C: x: IntSub # due to invariance, a type is only a subtype of `HasX` # if its `x` attribute is of type *exactly* `int`: # a subclass of `int` does not satisfy the interface # # TODO: these should pass static_assert(not is_subtype_of(C, HasX)) # error: [static-assert-error] static_assert(not is_assignable_to(C, HasX)) # error: [static-assert-error] ``` All attributes on frozen dataclasses and namedtuples are immutable, so instances of these classes can never be considered to inhabit a protocol that declares a mutable-attribute member: ```py from dataclasses import dataclass from typing import NamedTuple @dataclass class MutableDataclass: x: int static_assert(is_subtype_of(MutableDataclass, HasX)) static_assert(is_assignable_to(MutableDataclass, HasX)) @dataclass(frozen=True) class ImmutableDataclass: x: int # TODO: these should pass static_assert(not is_subtype_of(ImmutableDataclass, HasX)) # error: [static-assert-error] static_assert(not is_assignable_to(ImmutableDataclass, HasX)) # error: [static-assert-error] class NamedTupleWithX(NamedTuple): x: int # TODO: these should pass static_assert(not is_subtype_of(NamedTupleWithX, HasX)) # error: [static-assert-error] static_assert(not is_assignable_to(NamedTupleWithX, HasX)) # error: [static-assert-error] ``` However, a type with a read-write property `x` *does* satisfy the `HasX` protocol. The `HasX` protocol only specifies what the type of `x` should be when accessed from instances; instances of `XProperty` in the below example have a mutable attribute `x` of type `int`: ```py class XProperty: _x: int @property def x(self) -> int: return self._x @x.setter def x(self, x: int) -> None: self._x = x**2 static_assert(is_subtype_of(XProperty, HasX)) static_assert(is_assignable_to(XProperty, HasX)) ``` Attribute members on protocol classes are allowed to have default values, just like instance attributes on other classes. Similar to nominal classes, attributes with defaults can be accessed on the class object itself and any explicit subclasses of the protocol class. It cannot be assumed to exist on the meta-type of any arbitrary inhabitant of the protocol type, however; an implicit subtype of the protocol will not necessarily have a default value for the instance attribute provided in its class body: ```py class HasXWithDefault(Protocol): x: int = 42 reveal_type(HasXWithDefault.x) # revealed: int class ExplicitSubclass(HasXWithDefault): ... reveal_type(ExplicitSubclass.x) # revealed: int def f(arg: HasXWithDefault): # TODO: should emit `[unresolved-reference]` and reveal `Unknown` reveal_type(type(arg).x) # revealed: int ``` Assignments in a class body of a protocol -- of any kind -- are not permitted by ty unless the symbol being assigned to is also explicitly declared in the protocol's class body. Note that this is stricter validation of protocol members than many other type checkers currently apply (as of 2025/04/21). The reason for this strict validation is that undeclared variables in the class body would lead to an ambiguous interface being declared by the protocol. ```py from typing_extensions import TypeAlias, get_protocol_members class MyContext: def __enter__(self) -> int: return 42 def __exit__(self, *args) -> None: ... class LotsOfBindings(Protocol): a: int a = 42 # this is fine, since `a` is declared in the class body b: int = 56 # this is also fine, by the same principle type c = str # this is very strange but I can't see a good reason to disallow it d: TypeAlias = bytes # same here class Nested: ... # also weird, but we should also probably allow it class NestedProtocol(Protocol): ... # same here... e = 72 # TODO: this should error with `[invalid-protocol]` (`e` is not declared) f, g = (1, 2) # TODO: this should error with `[invalid-protocol]` (`f` and `g` are not declared) h: int = (i := 3) # TODO: this should error with `[invalid-protocol]` (`i` is not declared) for j in range(42): # TODO: this should error with `[invalid-protocol]` (`j` is not declared) pass with MyContext() as k: # TODO: this should error with `[invalid-protocol]` (`k` is not declared) pass match object(): case l: # TODO: this should error with `[invalid-protocol]` (`l` is not declared) ... # TODO: actually a frozenset # revealed: tuple[Literal["Nested"], Literal["NestedProtocol"], Literal["a"], Literal["b"], Literal["c"], Literal["d"], Literal["e"], Literal["f"], Literal["g"], Literal["h"], Literal["i"], Literal["j"], Literal["k"], Literal["l"]] reveal_type(get_protocol_members(LotsOfBindings)) ``` Attribute members are allowed to have assignments in methods on the protocol class, just like non-protocol classes. Unlike other classes, however, instance attributes that are not declared in the class body are disallowed. This is mandated by [the spec][spec_protocol_members]: > Additional attributes *only* defined in the body of a method by assignment via `self` are not > allowed. The rationale for this is that the protocol class implementation is often not shared by > subtypes, so the interface should not depend on the default implementation. ```py class Foo(Protocol): x: int y: str def __init__(self) -> None: self.x = 42 # fine self.a = 56 # TODO: should emit diagnostic self.b: int = 128 # TODO: should emit diagnostic def non_init_method(self) -> None: self.y = 64 # fine self.c = 72 # TODO: should emit diagnostic # Note: the list of members does not include `a`, `b` or `c`, # as none of these attributes is declared in the class body. # # TODO: actually a frozenset reveal_type(get_protocol_members(Foo)) # revealed: tuple[Literal["non_init_method"], Literal["x"], Literal["y"]] ``` If a member is declared in a superclass of a protocol class, it is fine for it to be assigned to in the sub-protocol class without a redeclaration: ```py class Super(Protocol): x: int class Sub(Super, Protocol): x = 42 # no error here, since it's declared in the superclass # TODO: actually frozensets reveal_type(get_protocol_members(Super)) # revealed: tuple[Literal["x"]] reveal_type(get_protocol_members(Sub)) # revealed: tuple[Literal["x"]] ``` If a protocol has 0 members, then all other types are assignable to it, and all fully static types are subtypes of it: ```py from typing import Protocol class UniversalSet(Protocol): ... static_assert(is_assignable_to(object, UniversalSet)) static_assert(is_subtype_of(object, UniversalSet)) ``` Which means that `UniversalSet` here is in fact an equivalent type to `object`: ```py from ty_extensions import is_equivalent_to static_assert(is_equivalent_to(UniversalSet, object)) ``` `object` is a subtype of certain other protocols too. Since all fully static types (whether nominal or structural) are subtypes of `object`, these protocols are also subtypes of `object`; and this means that these protocols are also equivalent to `UniversalSet` and `object`: ```py class SupportsStr(Protocol): def __str__(self) -> str: ... static_assert(is_equivalent_to(SupportsStr, UniversalSet)) static_assert(is_equivalent_to(SupportsStr, object)) class SupportsClass(Protocol): @property def __class__(self) -> type: ... static_assert(is_equivalent_to(SupportsClass, UniversalSet)) static_assert(is_equivalent_to(SupportsClass, SupportsStr)) static_assert(is_equivalent_to(SupportsClass, object)) ``` If a protocol contains members that are not defined on `object`, then that protocol will (like all types in Python) still be assignable to `object`, but `object` will not be assignable to that protocol: ```py static_assert(is_assignable_to(HasX, object)) static_assert(is_subtype_of(HasX, object)) static_assert(not is_assignable_to(object, HasX)) static_assert(not is_subtype_of(object, HasX)) ``` But `object` is the *only* fully static nominal type that a protocol type can ever be assignable to or a subtype of: ```py static_assert(not is_assignable_to(HasX, Foo)) static_assert(not is_subtype_of(HasX, Foo)) ``` ## Equivalence of protocols Two protocols are considered equivalent types if they specify the same interface, even if they have different names: ```py from typing import Protocol from ty_extensions import is_equivalent_to, static_assert class HasX(Protocol): x: int class AlsoHasX(Protocol): x: int static_assert(is_equivalent_to(HasX, AlsoHasX)) ``` And unions containing equivalent protocols are recognised as equivalent, even when the order is not identical: ```py class HasY(Protocol): y: str class AlsoHasY(Protocol): y: str class A: ... class B: ... static_assert(is_equivalent_to(A | HasX | B | HasY, B | AlsoHasY | AlsoHasX | A)) ``` Protocols are considered equivalent if their members are equivalent, even if those members are differently ordered unions: ```py class C: ... class UnionProto1(Protocol): x: A | B | C class UnionProto2(Protocol): x: C | A | B static_assert(is_equivalent_to(UnionProto1, UnionProto2)) static_assert(is_equivalent_to(UnionProto1 | A | B, B | UnionProto2 | A)) ``` ## Intersections of protocols An intersection of two protocol types `X` and `Y` is equivalent to a protocol type `Z` that inherits from both `X` and `Y`: ```py from typing import Protocol from ty_extensions import Intersection, static_assert, is_equivalent_to class HasX(Protocol): x: int class HasY(Protocol): y: str class HasXAndYProto(HasX, HasY, Protocol): ... # TODO: this should pass static_assert(is_equivalent_to(HasXAndYProto, Intersection[HasX, HasY])) # error: [static-assert-error] ``` But this is only true if the subclass has `Protocol` in its explicit bases (otherwise, it is a nominal type rather than a structural type): ```py class HasXAndYNominal(HasX, HasY): ... static_assert(not is_equivalent_to(HasXAndYNominal, Intersection[HasX, HasY])) ``` A protocol type `X` and a nominal type `Y` can be inferred as disjoint types if `Y` is a `@final` type and `Y` does not satisfy the interface declared by `X`. But if `Y` is not `@final`, then this does not hold true, since a subclass of `Y` could always provide additional methods or attributes that would lead to it satisfying `X`'s interface: ```py from typing import final from ty_extensions import is_disjoint_from class NotFinalNominal: ... @final class FinalNominal: ... static_assert(not is_disjoint_from(NotFinalNominal, HasX)) static_assert(is_disjoint_from(FinalNominal, HasX)) def _(arg1: Intersection[HasX, NotFinalNominal], arg2: Intersection[HasX, FinalNominal]): reveal_type(arg1) # revealed: HasX & NotFinalNominal reveal_type(arg2) # revealed: Never ``` ## Satisfying a protocol's interface A type does not have to be an `Instance` type in order to be a subtype of a protocol. Other protocols can be a subtype of a protocol, as can `ModuleLiteral` types, `ClassLiteral` types, and others. Another protocol can be a subtype of `HasX` either through "explicit" (nominal) inheritance from `HasX`, or by specifying a superset of `HasX`'s interface: `module.py`: ```py x: int = 42 ``` `main.py`: ```py import module from typing import Protocol from ty_extensions import is_subtype_of, is_assignable_to, static_assert, TypeOf class HasX(Protocol): x: int # TODO: this should pass static_assert(is_subtype_of(TypeOf[module], HasX)) # error: [static-assert-error] static_assert(is_assignable_to(TypeOf[module], HasX)) class ExplicitProtocolSubtype(HasX, Protocol): y: int static_assert(is_subtype_of(ExplicitProtocolSubtype, HasX)) static_assert(is_assignable_to(ExplicitProtocolSubtype, HasX)) class ImplicitProtocolSubtype(Protocol): x: int y: str static_assert(is_subtype_of(ImplicitProtocolSubtype, HasX)) static_assert(is_assignable_to(ImplicitProtocolSubtype, HasX)) class Meta(type): x: int class UsesMeta(metaclass=Meta): ... # TODO: these should pass static_assert(is_subtype_of(UsesMeta, HasX)) # error: [static-assert-error] static_assert(is_assignable_to(UsesMeta, HasX)) # error: [static-assert-error] ``` ## `ClassVar` attribute members If a protocol `ClassVarX` has a `ClassVar` attribute member `x` with type `int`, this indicates that a readable `x` attribute must be accessible on any inhabitant of `ClassVarX`, and that a readable `x` attribute must *also* be accessible on the *type* of that inhabitant: `classvars.py`: ```py from typing import ClassVar, Protocol from ty_extensions import is_subtype_of, is_assignable_to, static_assert class ClassVarXProto(Protocol): x: ClassVar[int] def f(obj: ClassVarXProto): reveal_type(obj.x) # revealed: int reveal_type(type(obj).x) # revealed: int obj.x = 42 # error: [invalid-attribute-access] "Cannot assign to ClassVar `x` from an instance of type `ClassVarXProto`" class InstanceAttrX: x: int # TODO: these should pass static_assert(not is_assignable_to(InstanceAttrX, ClassVarXProto)) # error: [static-assert-error] static_assert(not is_subtype_of(InstanceAttrX, ClassVarXProto)) # error: [static-assert-error] class PropertyX: @property def x(self) -> int: return 42 # TODO: these should pass static_assert(not is_assignable_to(PropertyX, ClassVarXProto)) # error: [static-assert-error] static_assert(not is_subtype_of(PropertyX, ClassVarXProto)) # error: [static-assert-error] class ClassVarX: x: ClassVar[int] = 42 static_assert(is_assignable_to(ClassVarX, ClassVarXProto)) static_assert(is_subtype_of(ClassVarX, ClassVarXProto)) ``` This is mentioned by the [spec](https://typing.python.org/en/latest/spec/protocol.html#protocol-members) and tested in the [conformance suite](https://github.com/python/typing/blob/main/conformance/tests/protocols_definition.py) as something that must be supported by type checkers: > To distinguish between protocol class variables and protocol instance variables, the special > `ClassVar` annotation should be used. ## Subtyping of protocols with property members A read-only property on a protocol can be satisfied by a mutable attribute, a read-only property, a read/write property, a `Final` attribute, or a `ClassVar` attribute: ```py from typing import ClassVar, Final, Protocol from ty_extensions import is_subtype_of, is_assignable_to, static_assert class HasXProperty(Protocol): @property def x(self) -> int: ... class XAttr: x: int static_assert(is_subtype_of(XAttr, HasXProperty)) static_assert(is_assignable_to(XAttr, HasXProperty)) class XReadProperty: @property def x(self) -> int: return 42 static_assert(is_subtype_of(XReadProperty, HasXProperty)) static_assert(is_assignable_to(XReadProperty, HasXProperty)) class XReadWriteProperty: @property def x(self) -> int: return 42 @x.setter def x(self, val: int) -> None: ... static_assert(is_subtype_of(XReadWriteProperty, HasXProperty)) static_assert(is_assignable_to(XReadWriteProperty, HasXProperty)) class XClassVar: x: ClassVar[int] = 42 static_assert(is_subtype_of(XClassVar, HasXProperty)) static_assert(is_assignable_to(XClassVar, HasXProperty)) class XFinal: x: Final = 42 static_assert(is_subtype_of(XFinal, HasXProperty)) static_assert(is_assignable_to(XFinal, HasXProperty)) ``` A read-only property on a protocol, unlike a mutable attribute, is covariant: `XSub` in the below example satisfies the `HasXProperty` interface even though the type of the `x` attribute on `XSub` is a subtype of `int` rather than being exactly `int`. ```py class MyInt(int): ... class XSub: x: MyInt static_assert(is_subtype_of(XSub, HasXProperty)) static_assert(is_assignable_to(XSub, HasXProperty)) ``` A read/write property on a protocol, where the getter returns the same type that the setter takes, is equivalent to a normal mutable attribute on a protocol. ```py class HasMutableXProperty(Protocol): @property def x(self) -> int: ... @x.setter def x(self, val: int) -> None: ... class XAttr: x: int static_assert(is_subtype_of(XAttr, HasXProperty)) static_assert(is_assignable_to(XAttr, HasXProperty)) class XReadProperty: @property def x(self) -> int: return 42 # TODO: these should pass static_assert(not is_subtype_of(XReadProperty, HasXProperty)) # error: [static-assert-error] static_assert(not is_assignable_to(XReadProperty, HasXProperty)) # error: [static-assert-error] class XReadWriteProperty: @property def x(self) -> int: return 42 @x.setter def x(self, val: int) -> None: ... static_assert(is_subtype_of(XReadWriteProperty, HasXProperty)) static_assert(is_assignable_to(XReadWriteProperty, HasXProperty)) class XSub: x: MyInt # TODO: should pass static_assert(not is_subtype_of(XSub, HasXProperty)) # error: [static-assert-error] static_assert(not is_assignable_to(XSub, HasXProperty)) # error: [static-assert-error] ``` A protocol with a read/write property `x` is exactly equivalent to a protocol with a mutable attribute `x`. Both are subtypes of a protocol with a read-only prooperty `x`: ```py from ty_extensions import is_equivalent_to class HasMutableXAttr(Protocol): x: int # TODO: should pass static_assert(is_equivalent_to(HasMutableXAttr, HasMutableXProperty)) # error: [static-assert-error] static_assert(is_subtype_of(HasMutableXAttr, HasXProperty)) static_assert(is_assignable_to(HasMutableXAttr, HasXProperty)) static_assert(is_subtype_of(HasMutableXProperty, HasXProperty)) static_assert(is_assignable_to(HasMutableXProperty, HasXProperty)) ``` A read/write property on a protocol, where the setter accepts a subtype of the type returned by the getter, can be satisfied by a mutable attribute of any type bounded by the upper bound of the getter-returned type and the lower bound of the setter-accepted type. This follows from the principle that a type `X` can only be a subtype of a given protocol if the `X`'s behaviour is a superset of the behaviour specified by the interface declared by the protocol. In the below example, the behaviour of an instance of `XAttr` is a superset of the behaviour specified by the protocol `HasAsymmetricXProperty`. The protocol specifies that reading an `x` attribute on the instance must resolve to an instance of `int` or a subclass thereof, and `XAttr` satisfies this requirement. The protocol also specifies that you must be able to assign instances of `MyInt` to the `x` attribute, and again this is satisfied by `XAttr`: on instances of `XAttr`, you can assign *any* instance of `int` to the `x` attribute, and thus by extension you can assign any instance of `IntSub` to the `x` attribute, since any instance of `IntSub` is an instance of `int`: ```py class HasAsymmetricXProperty(Protocol): @property def x(self) -> int: ... @x.setter def x(self, val: MyInt) -> None: ... class XAttr: x: int static_assert(is_subtype_of(XAttr, HasAsymmetricXProperty)) static_assert(is_assignable_to(XAttr, HasAsymmetricXProperty)) ``` The end conclusion of this is that the getter-returned type of a property is always covariant and the setter-accepted type is always contravariant. The combination of these leads to invariance for a regular mutable attribute, where the implied getter-returned and setter-accepted types are the same. ```py class XAttrSub: x: MyInt static_assert(is_subtype_of(XAttrSub, HasAsymmetricXProperty)) static_assert(is_assignable_to(XAttrSub, HasAsymmetricXProperty)) class MyIntSub(MyInt): pass class XAttrSubSub: x: MyIntSub # TODO: should pass static_assert(not is_subtype_of(XAttrSubSub, HasAsymmetricXProperty)) # error: [static-assert-error] static_assert(not is_assignable_to(XAttrSubSub, HasAsymmetricXProperty)) # error: [static-assert-error] ``` An asymmetric property on a protocol can also be satisfied by an asymmetric property on a nominal class whose getter and setter types satisfy the covariant and contravariant requirements, respectively. ```py class XAsymmetricProperty: @property def x(self) -> MyInt: return MyInt(0) @x.setter def x(self, x: int) -> None: ... static_assert(is_subtype_of(XAsymmetricProperty, HasAsymmetricXProperty)) static_assert(is_assignable_to(XAsymmetricProperty, HasAsymmetricXProperty)) ``` A custom descriptor attribute on the nominal class will also suffice: ```py class Descriptor: def __get__(self, instance, owner) -> MyInt: return MyInt(0) def __set__(self, value: int) -> None: ... class XCustomDescriptor: x: Descriptor = Descriptor() static_assert(is_subtype_of(XCustomDescriptor, HasAsymmetricXProperty)) static_assert(is_assignable_to(XCustomDescriptor, HasAsymmetricXProperty)) ``` Moreover, a read-only property on a protocol can be satisfied by a nominal class that defines a `__getattr__` method returning a suitable type. A read/write property can be satisfied by a nominal class that defines a `__getattr__` method returning a suitable type *and* a `__setattr__` method accepting a suitable type: ```py class HasGetAttr: def __getattr__(self, attr: str) -> int: return 42 static_assert(is_subtype_of(HasGetAttr, HasXProperty)) static_assert(is_assignable_to(HasGetAttr, HasXProperty)) # TODO: these should pass static_assert(not is_subtype_of(HasGetAttr, HasMutableXAttr)) # error: [static-assert-error] static_assert(not is_subtype_of(HasGetAttr, HasMutableXAttr)) # error: [static-assert-error] class HasGetAttrWithUnsuitableReturn: def __getattr__(self, attr: str) -> tuple[int, int]: return (1, 2) # TODO: these should pass static_assert(not is_subtype_of(HasGetAttrWithUnsuitableReturn, HasXProperty)) # error: [static-assert-error] static_assert(not is_assignable_to(HasGetAttrWithUnsuitableReturn, HasXProperty)) # error: [static-assert-error] class HasGetAttrAndSetAttr: def __getattr__(self, attr: str) -> MyInt: return MyInt(0) def __setattr__(self, attr: str, value: int) -> None: ... static_assert(is_subtype_of(HasGetAttrAndSetAttr, HasXProperty)) static_assert(is_assignable_to(HasGetAttrAndSetAttr, HasXProperty)) # TODO: these should pass static_assert(is_subtype_of(HasGetAttrAndSetAttr, XAsymmetricProperty)) # error: [static-assert-error] static_assert(is_assignable_to(HasGetAttrAndSetAttr, XAsymmetricProperty)) # error: [static-assert-error] ``` ## Narrowing of protocols By default, a protocol class cannot be used as the second argument to `isinstance()` or `issubclass()`, and a type checker must emit an error on such calls. However, we still narrow the type inside these branches (this matches the behaviour of other type checkers): ```py from typing_extensions import Protocol, reveal_type class HasX(Protocol): x: int def f(arg: object, arg2: type): if isinstance(arg, HasX): # error: [invalid-argument-type] reveal_type(arg) # revealed: HasX else: reveal_type(arg) # revealed: ~HasX if issubclass(arg2, HasX): # error: [invalid-argument-type] reveal_type(arg2) # revealed: type[HasX] else: reveal_type(arg2) # revealed: type & ~type[HasX] ``` A protocol class decorated with `@typing(_extensions).runtime_checkable` *can* be used as the second argument to `isisinstance()` at runtime: ```py from typing import runtime_checkable @runtime_checkable class RuntimeCheckableHasX(Protocol): x: int def f(arg: object): if isinstance(arg, RuntimeCheckableHasX): # no error! reveal_type(arg) # revealed: RuntimeCheckableHasX else: reveal_type(arg) # revealed: ~RuntimeCheckableHasX ``` but in order for a protocol class to be used as the second argument to `issubclass()`, it must satisfy two conditions: 1. It must be decorated with `@runtime_checkable` 1. It must *only* have method members (protocols with attribute members are not permitted) ```py @runtime_checkable class OnlyMethodMembers(Protocol): def method(self) -> None: ... def f(arg1: type, arg2: type): if issubclass(arg1, RuntimeCheckableHasX): # TODO: should emit an error here (has non-method members) reveal_type(arg1) # revealed: type[RuntimeCheckableHasX] else: reveal_type(arg1) # revealed: type & ~type[RuntimeCheckableHasX] if issubclass(arg2, OnlyMethodMembers): # no error! reveal_type(arg2) # revealed: type[OnlyMethodMembers] else: reveal_type(arg2) # revealed: type & ~type[OnlyMethodMembers] ``` ## Truthiness of protocol instance An instance of a protocol type generally has ambiguous truthiness: ```py from typing import Protocol class Foo(Protocol): x: int def f(foo: Foo): reveal_type(bool(foo)) # revealed: bool ``` But this is not the case if the protocol has a `__bool__` method member that returns `Literal[True]` or `Literal[False]`: ```py from typing import Literal class Truthy(Protocol): def __bool__(self) -> Literal[True]: ... class FalsyFoo(Foo, Protocol): def __bool__(self) -> Literal[False]: ... class FalsyFooSubclass(FalsyFoo, Protocol): y: str def g(a: Truthy, b: FalsyFoo, c: FalsyFooSubclass): reveal_type(bool(a)) # revealed: Literal[True] reveal_type(bool(b)) # revealed: Literal[False] reveal_type(bool(c)) # revealed: Literal[False] ``` It is not sufficient for a protocol to have a callable `__bool__` instance member that returns `Literal[True]` for it to be considered always truthy. Dunder methods are looked up on the class rather than the instance. If a protocol `X` has an instance-attribute `__bool__` member, it is unknowable whether that attribute can be accessed on the type of an object that satisfies `X`'s interface: ```py from typing import Callable class InstanceAttrBool(Protocol): __bool__: Callable[[], Literal[True]] def h(obj: InstanceAttrBool): reveal_type(bool(obj)) # revealed: bool ``` ## Fully static protocols; gradual protocols A protocol is only fully static if all of its members are fully static: ```py from typing import Protocol, Any from ty_extensions import is_fully_static, static_assert class FullyStatic(Protocol): x: int class NotFullyStatic(Protocol): x: Any static_assert(is_fully_static(FullyStatic)) static_assert(not is_fully_static(NotFullyStatic)) ``` Non-fully-static protocols do not participate in subtyping or equivalence, only assignability and gradual equivalence: ```py from ty_extensions import is_subtype_of, is_assignable_to, is_equivalent_to, is_gradual_equivalent_to class NominalWithX: x: int = 42 static_assert(is_assignable_to(NominalWithX, FullyStatic)) static_assert(is_assignable_to(NominalWithX, NotFullyStatic)) static_assert(not is_subtype_of(FullyStatic, NotFullyStatic)) static_assert(is_assignable_to(FullyStatic, NotFullyStatic)) static_assert(not is_subtype_of(NotFullyStatic, FullyStatic)) static_assert(is_assignable_to(NotFullyStatic, FullyStatic)) static_assert(not is_subtype_of(NominalWithX, NotFullyStatic)) static_assert(is_assignable_to(NominalWithX, NotFullyStatic)) static_assert(is_subtype_of(NominalWithX, FullyStatic)) static_assert(is_equivalent_to(FullyStatic, FullyStatic)) static_assert(not is_equivalent_to(NotFullyStatic, NotFullyStatic)) static_assert(is_gradual_equivalent_to(FullyStatic, FullyStatic)) static_assert(is_gradual_equivalent_to(NotFullyStatic, NotFullyStatic)) class AlsoNotFullyStatic(Protocol): x: Any static_assert(not is_equivalent_to(NotFullyStatic, AlsoNotFullyStatic)) static_assert(is_gradual_equivalent_to(NotFullyStatic, AlsoNotFullyStatic)) ``` Empty protocols are fully static; this follows from the fact that an empty protocol is equivalent to the nominal type `object` (as described above): ```py class Empty(Protocol): ... static_assert(is_fully_static(Empty)) ``` A method member is only considered fully static if all its parameter annotations and its return annotation are fully static: ```py class FullyStaticMethodMember(Protocol): def method(self, x: int) -> str: ... class DynamicParameter(Protocol): def method(self, x: Any) -> str: ... class DynamicReturn(Protocol): def method(self, x: int) -> Any: ... static_assert(is_fully_static(FullyStaticMethodMember)) # TODO: these should pass static_assert(not is_fully_static(DynamicParameter)) # error: [static-assert-error] static_assert(not is_fully_static(DynamicReturn)) # error: [static-assert-error] ``` The [typing spec][spec_protocol_members] states: > If any parameters of a protocol method are not annotated, then their types are assumed to be `Any` Thus, a partially unannotated method member can also not be considered to be fully static: ```py class NoParameterAnnotation(Protocol): def method(self, x) -> str: ... class NoReturnAnnotation(Protocol): def method(self, x: int): ... # TODO: these should pass static_assert(not is_fully_static(NoParameterAnnotation)) # error: [static-assert-error] static_assert(not is_fully_static(NoReturnAnnotation)) # error: [static-assert-error] ``` ## Callable protocols An instance of a protocol type is callable if the protocol defines a `__call__` method: ```py from typing import Protocol class CallMeMaybe(Protocol): def __call__(self, x: int) -> str: ... def f(obj: CallMeMaybe): reveal_type(obj(42)) # revealed: str obj("bar") # error: [invalid-argument-type] ``` An instance of a protocol like this can be assignable to a `Callable` type, but only if it has the right signature: ```py from typing import Callable from ty_extensions import is_subtype_of, is_assignable_to, static_assert static_assert(is_subtype_of(CallMeMaybe, Callable[[int], str])) static_assert(is_assignable_to(CallMeMaybe, Callable[[int], str])) static_assert(not is_subtype_of(CallMeMaybe, Callable[[str], str])) static_assert(not is_assignable_to(CallMeMaybe, Callable[[str], str])) static_assert(not is_subtype_of(CallMeMaybe, Callable[[CallMeMaybe, int], str])) static_assert(not is_assignable_to(CallMeMaybe, Callable[[CallMeMaybe, int], str])) def g(obj: Callable[[int], str], obj2: CallMeMaybe, obj3: Callable[[str], str]): obj = obj2 obj3 = obj2 # error: [invalid-assignment] ``` By the same token, a `Callable` type can also be assignable to a protocol-instance type if the signature implied by the `Callable` type is assignable to the signature of the `__call__` method specified by the protocol: ```py from ty_extensions import TypeOf class Foo(Protocol): def __call__(self, x: int, /) -> str: ... static_assert(is_subtype_of(Callable[[int], str], Foo)) static_assert(is_assignable_to(Callable[[int], str], Foo)) # TODO: these should pass static_assert(not is_subtype_of(Callable[[str], str], Foo)) # error: [static-assert-error] static_assert(not is_assignable_to(Callable[[str], str], Foo)) # error: [static-assert-error] static_assert(not is_subtype_of(Callable[[CallMeMaybe, int], str], Foo)) # error: [static-assert-error] static_assert(not is_assignable_to(Callable[[CallMeMaybe, int], str], Foo)) # error: [static-assert-error] def h(obj: Callable[[int], str], obj2: Foo, obj3: Callable[[str], str]): obj2 = obj # TODO: we should emit [invalid-assignment] here because the signature of `obj3` is not assignable # to the declared type of `obj2` obj2 = obj3 def satisfies_foo(x: int) -> str: return "foo" static_assert(is_subtype_of(TypeOf[satisfies_foo], Foo)) static_assert(is_assignable_to(TypeOf[satisfies_foo], Foo)) ``` ## Protocols are never singleton types, and are never single-valued types It *might* be possible to have a singleton protocol-instance type...? For example, `WeirdAndWacky` in the following snippet only has a single possible inhabitant: `None`! It is thus a singleton type. However, going out of our way to recognise it as such is probably not worth it. Such cases should anyway be exceedingly rare and/or contrived. ```py from typing import Protocol, Callable from ty_extensions import is_singleton, is_single_valued class WeirdAndWacky(Protocol): @property def __class__(self) -> Callable[[], None]: ... reveal_type(is_singleton(WeirdAndWacky)) # revealed: Literal[False] reveal_type(is_single_valued(WeirdAndWacky)) # revealed: Literal[False] ``` ## Integration test: `typing.SupportsIndex` and `typing.Sized` `typing.SupportsIndex` and `typing.Sized` are two protocols that are very commonly used in the wild. ```py from typing import SupportsIndex, Sized, Literal def one(some_int: int, some_literal_int: Literal[1], some_indexable: SupportsIndex): a: SupportsIndex = some_int b: SupportsIndex = some_literal_int c: SupportsIndex = some_indexable def two(some_list: list, some_tuple: tuple[int, str], some_sized: Sized): a: Sized = some_list b: Sized = some_tuple c: Sized = some_sized ``` ## Recursive protocols ### Properties ```py from __future__ import annotations from typing import Protocol, Any from ty_extensions import is_fully_static, static_assert, is_assignable_to, is_subtype_of, is_equivalent_to class RecursiveFullyStatic(Protocol): parent: RecursiveFullyStatic x: int class RecursiveNonFullyStatic(Protocol): parent: RecursiveNonFullyStatic x: Any static_assert(is_fully_static(RecursiveFullyStatic)) static_assert(not is_fully_static(RecursiveNonFullyStatic)) static_assert(not is_subtype_of(RecursiveFullyStatic, RecursiveNonFullyStatic)) static_assert(not is_subtype_of(RecursiveNonFullyStatic, RecursiveFullyStatic)) static_assert(is_assignable_to(RecursiveNonFullyStatic, RecursiveNonFullyStatic)) static_assert(is_assignable_to(RecursiveFullyStatic, RecursiveNonFullyStatic)) static_assert(is_assignable_to(RecursiveNonFullyStatic, RecursiveFullyStatic)) class AlsoRecursiveFullyStatic(Protocol): parent: AlsoRecursiveFullyStatic x: int static_assert(is_equivalent_to(AlsoRecursiveFullyStatic, RecursiveFullyStatic)) class RecursiveOptionalParent(Protocol): parent: RecursiveOptionalParent | None static_assert(is_fully_static(RecursiveOptionalParent)) static_assert(is_assignable_to(RecursiveOptionalParent, RecursiveOptionalParent)) static_assert(is_assignable_to(RecursiveNonFullyStatic, RecursiveOptionalParent)) static_assert(not is_assignable_to(RecursiveOptionalParent, RecursiveNonFullyStatic)) class Other(Protocol): z: str def _(rec: RecursiveFullyStatic, other: Other): reveal_type(rec.parent.parent.parent) # revealed: RecursiveFullyStatic rec.parent.parent.parent = rec rec = rec.parent.parent.parent rec.parent.parent.parent = other # error: [invalid-assignment] other = rec.parent.parent.parent # error: [invalid-assignment] class Foo(Protocol): @property def x(self) -> "Foo": ... class Bar(Protocol): @property def x(self) -> "Bar": ... # TODO: this should pass # error: [static-assert-error] static_assert(is_equivalent_to(Foo, Bar)) ``` ### Nested occurrences of self-reference Make sure that we handle self-reference correctly, even if the self-reference appears deeply nested within the type of a protocol member: ```toml [environment] python-version = "3.12" ``` ```py from __future__ import annotations from typing import Protocol, Callable from ty_extensions import Intersection, Not, is_fully_static, is_assignable_to, is_equivalent_to, static_assert class C: ... class GenericC[T](Protocol): pass class Recursive(Protocol): direct: Recursive union: None | Recursive intersection1: Intersection[C, Recursive] intersection2: Intersection[C, Not[Recursive]] t: tuple[int, tuple[str, Recursive]] callable1: Callable[[int], Recursive] callable2: Callable[[Recursive], int] subtype_of: type[Recursive] generic: GenericC[Recursive] def method(self, x: Recursive) -> Recursive: ... nested: Recursive | Callable[[Recursive | Recursive, tuple[Recursive, Recursive]], Recursive | Recursive] static_assert(is_fully_static(Recursive)) static_assert(is_equivalent_to(Recursive, Recursive)) static_assert(is_assignable_to(Recursive, Recursive)) def _(r: Recursive): reveal_type(r.direct) # revealed: Recursive reveal_type(r.union) # revealed: None | Recursive reveal_type(r.intersection1) # revealed: C & Recursive reveal_type(r.intersection2) # revealed: C & ~Recursive reveal_type(r.t) # revealed: tuple[int, tuple[str, Recursive]] reveal_type(r.callable1) # revealed: (int, /) -> Recursive reveal_type(r.callable2) # revealed: (Recursive, /) -> int reveal_type(r.subtype_of) # revealed: type[Recursive] reveal_type(r.generic) # revealed: GenericC[Recursive] reveal_type(r.method(r)) # revealed: Recursive reveal_type(r.nested) # revealed: Recursive | ((Recursive, tuple[Recursive, Recursive], /) -> Recursive) reveal_type(r.method(r).callable1(1).direct.t[1][1]) # revealed: Recursive ``` ### Regression test: narrowing with self-referential protocols This snippet caused us to panic on an early version of the implementation for protocols. ```py from typing import Protocol class A(Protocol): def x(self) -> "B | A": ... class B(Protocol): def y(self): ... obj = something_unresolvable # error: [unresolved-reference] reveal_type(obj) # revealed: Unknown if isinstance(obj, (B, A)): reveal_type(obj) # revealed: (Unknown & B) | (Unknown & A) ``` ## TODO Add tests for: - More tests for protocols inside `type[]`. [Spec reference][protocols_inside_type_spec]. - Protocols with instance-method members, including: - Protocols with methods that have parameters or the return type unannotated - Protocols with methods that have parameters or the return type annotated with `Any` - Protocols with `@classmethod` and `@staticmethod` - Assignability of non-instance types to protocols with instance-method members (e.g. a class-literal type can be a subtype of `Sized` if its metaclass has a `__len__` method) - Protocols with methods that have annotated `self` parameters. [Spec reference][self_types_protocols_spec]. - Protocols with overloaded method members - `super()` on nominal subtypes (explicit and implicit) of protocol classes - [Recursive protocols][recursive_protocols_spec] - Generic protocols - Non-generic protocols with function-scoped generic methods - Protocols with instance attributes annotated with `Callable` (can a nominal type with a method satisfy that protocol, and if so in what cases?) - Protocols decorated with `@final` - Equivalence and subtyping between `Callable` types and protocols that define `__call__` [mypy_protocol_docs]: https://mypy.readthedocs.io/en/stable/protocols.html#protocols-and-structural-subtyping [mypy_protocol_tests]: https://github.com/python/mypy/blob/master/test-data/unit/check-protocols.test [protocol conformance tests]: https://github.com/python/typing/tree/main/conformance/tests [protocols_inside_type_spec]: https://typing.python.org/en/latest/spec/protocol.html#type-and-class-objects-vs-protocols [recursive_protocols_spec]: https://typing.python.org/en/latest/spec/protocol.html#recursive-protocols [self_types_protocols_spec]: https://typing.python.org/en/latest/spec/protocol.html#self-types-in-protocols [spec_protocol_members]: https://typing.python.org/en/latest/spec/protocol.html#protocol-members [typing_spec_protocols]: https://typing.python.org/en/latest/spec/protocol.html