use ruff_db::files::{File, FilePath}; use ruff_db::source::line_index; use ruff_python_ast as ast; use ruff_python_ast::{Expr, ExprRef, HasNodeIndex, name::Name}; use ruff_source_file::LineIndex; use crate::Db; use crate::module_name::ModuleName; use crate::module_resolver::{KnownModule, Module, resolve_module}; use crate::semantic_index::scope::FileScopeId; use crate::semantic_index::semantic_index; use crate::types::ide_support::all_declarations_and_bindings; use crate::types::{Type, binding_type, infer_scope_types}; pub struct SemanticModel<'db> { db: &'db dyn Db, file: File, } impl<'db> SemanticModel<'db> { pub fn new(db: &'db dyn Db, file: File) -> Self { Self { db, file } } // TODO we don't actually want to expose the Db directly to lint rules, but we need to find a // solution for exposing information from types pub fn db(&self) -> &dyn Db { self.db } pub fn file_path(&self) -> &FilePath { self.file.path(self.db) } pub fn line_index(&self) -> LineIndex { line_index(self.db, self.file) } pub fn resolve_module(&self, module_name: &ModuleName) -> Option> { resolve_module(self.db, module_name) } /// Returns completions for symbols available in a `from module import ` context. pub fn import_completions( &self, import: &ast::StmtImportFrom, _name: Option, ) -> Vec> { let module_name = match ModuleName::from_import_statement(self.db, self.file, import) { Ok(module_name) => module_name, Err(err) => { tracing::debug!( "Could not extract module name from `{module:?}` with level {level}: {err:?}", module = import.module, level = import.level, ); return vec![]; } }; self.module_completions(&module_name) } /// Returns completions for symbols available in the given module as if /// it were imported by this model's `File`. fn module_completions(&self, module_name: &ModuleName) -> Vec> { let Some(module) = resolve_module(self.db, module_name) else { tracing::debug!("Could not resolve module from `{module_name:?}`"); return vec![]; }; let ty = Type::module_literal(self.db, self.file, module); let builtin = module.is_known(self.db, KnownModule::Builtins); let mut completions = vec![]; for crate::types::Member { name, ty } in crate::types::all_members(self.db, ty) { completions.push(Completion { name, ty, builtin }); } for submodule_basename in module.all_submodules(self.db) { let Some(basename) = ModuleName::new(submodule_basename.as_str()) else { continue; }; let mut submodule_name = module_name.clone(); submodule_name.extend(&basename); let Some(submodule) = resolve_module(self.db, &submodule_name) else { continue; }; let ty = Type::module_literal(self.db, self.file, submodule); completions.push(Completion { name: submodule_basename.clone(), ty, builtin, }); } completions } /// Returns completions for symbols available in a `object.` context. pub fn attribute_completions(&self, node: &ast::ExprAttribute) -> Vec> { let ty = node.value.inferred_type(self); crate::types::all_members(self.db, ty) .into_iter() .map(|member| Completion { name: member.name, ty: member.ty, builtin: false, }) .collect() } /// Returns completions for symbols available in the scope containing the /// given expression. /// /// If a scope could not be determined, then completions for the global /// scope of this model's `File` are returned. pub fn scoped_completions(&self, node: ast::AnyNodeRef<'_>) -> Vec> { let index = semantic_index(self.db, self.file); // TODO: We currently use `try_expression_scope_id` here as a hotfix for [1]. // Revert this to use `expression_scope_id` once a proper fix is in place. // // [1] https://github.com/astral-sh/ty/issues/572 let Some(file_scope) = (match node { ast::AnyNodeRef::Identifier(identifier) => index.try_expression_scope_id(identifier), node => match node.as_expr_ref() { // If we couldn't identify a specific // expression that we're in, then just // fall back to the global scope. None => Some(FileScopeId::global()), Some(expr) => index.try_expression_scope_id(&expr), }, }) else { return vec![]; }; let mut completions = vec![]; for (file_scope, _) in index.ancestor_scopes(file_scope) { completions.extend( all_declarations_and_bindings(self.db, file_scope.to_scope_id(self.db, self.file)) .map(|member| Completion { name: member.name, ty: member.ty, builtin: false, }), ); } // Builtins are available in all scopes. let builtins = ModuleName::new("builtins").expect("valid module name"); completions.extend(self.module_completions(&builtins)); completions } } /// A classification of symbol names. /// /// The ordering here is used for sorting completions. /// /// This sorts "normal" names first, then dunder names and finally /// single-underscore names. This matches the order of the variants defined for /// this enum, which is in turn picked up by the derived trait implementation /// for `Ord`. #[derive(Clone, Copy, Eq, PartialEq, PartialOrd, Ord)] pub enum NameKind { Normal, Dunder, Sunder, } impl NameKind { pub fn classify(name: &Name) -> NameKind { // Dunder needs a prefix and suffix double underscore. // When there's only a prefix double underscore, this // results in explicit name mangling. We let that be // classified as-if they were single underscore names. // // Ref: if name.starts_with("__") && name.ends_with("__") { NameKind::Dunder } else if name.starts_with('_') { NameKind::Sunder } else { NameKind::Normal } } } /// A suggestion for code completion. #[derive(Clone, Debug)] pub struct Completion<'db> { /// The label shown to the user for this suggestion. pub name: Name, /// The type of this completion. pub ty: Type<'db>, /// Whether this suggestion came from builtins or not. /// /// At time of writing (2025-06-26), this information /// doesn't make it into the LSP response. Instead, we /// use it mainly in tests so that we can write less /// noisy tests. pub builtin: bool, } impl<'db> Completion<'db> { /// Returns the "kind" of this completion. /// /// This is meant to be a very general classification of this completion. /// Typically, this is communicated from the LSP server to a client, and /// the client uses this information to help improve the UX (perhaps by /// assigning an icon of some kind to the completion). pub fn kind(&self, db: &'db dyn Db) -> Option { fn imp<'db>(db: &'db dyn Db, ty: Type<'db>) -> Option { Some(match ty { Type::FunctionLiteral(_) | Type::DataclassDecorator(_) | Type::WrapperDescriptor(_) | Type::DataclassTransformer(_) | Type::Callable(_) => CompletionKind::Function, Type::BoundMethod(_) | Type::MethodWrapper(_) => CompletionKind::Method, Type::ModuleLiteral(_) => CompletionKind::Module, Type::ClassLiteral(_) | Type::GenericAlias(_) | Type::SubclassOf(_) => { CompletionKind::Class } // This is a little weird for "struct." I'm mostly interpreting // "struct" here as a more general "object." ---AG Type::NominalInstance(_) | Type::PropertyInstance(_) | Type::Tuple(_) | Type::BoundSuper(_) | Type::TypedDict(_) => CompletionKind::Struct, Type::IntLiteral(_) | Type::BooleanLiteral(_) | Type::TypeIs(_) | Type::StringLiteral(_) | Type::LiteralString | Type::BytesLiteral(_) => CompletionKind::Value, Type::EnumLiteral(_) => CompletionKind::Enum, Type::ProtocolInstance(_) => CompletionKind::Interface, Type::TypeVar(_) => CompletionKind::TypeParameter, Type::Union(union) => union.elements(db).iter().find_map(|&ty| imp(db, ty))?, Type::Intersection(intersection) => { intersection.iter_positive(db).find_map(|ty| imp(db, ty))? } Type::Dynamic(_) | Type::Never | Type::SpecialForm(_) | Type::KnownInstance(_) | Type::AlwaysTruthy | Type::AlwaysFalsy => return None, }) } imp(db, self.ty) } } /// The "kind" of a completion. /// /// This is taken directly from the LSP completion specification: /// /// /// The idea here is that `Completion::kind` defines the mapping to this from /// `Type` (and possibly other information), which might be interesting and /// contentious. Then the outer edges map this to the LSP types, which is /// expected to be mundane and boring. #[derive(Clone, Copy, Debug)] pub enum CompletionKind { Text, Method, Function, Constructor, Field, Variable, Class, Interface, Module, Property, Unit, Value, Enum, Keyword, Snippet, Color, File, Reference, Folder, EnumMember, Constant, Struct, Event, Operator, TypeParameter, } pub trait HasType { /// Returns the inferred type of `self`. /// /// ## Panics /// May panic if `self` is from another file than `model`. fn inferred_type<'db>(&self, model: &SemanticModel<'db>) -> Type<'db>; } impl HasType for ast::ExprRef<'_> { fn inferred_type<'db>(&self, model: &SemanticModel<'db>) -> Type<'db> { let index = semantic_index(model.db, model.file); let file_scope = index.expression_scope_id(self); let scope = file_scope.to_scope_id(model.db, model.file); infer_scope_types(model.db, scope).expression_type(*self) } } macro_rules! impl_expression_has_type { ($ty: ty) => { impl HasType for $ty { #[inline] fn inferred_type<'db>(&self, model: &SemanticModel<'db>) -> Type<'db> { let expression_ref = ExprRef::from(self); expression_ref.inferred_type(model) } } }; } impl_expression_has_type!(ast::ExprBoolOp); impl_expression_has_type!(ast::ExprNamed); impl_expression_has_type!(ast::ExprBinOp); impl_expression_has_type!(ast::ExprUnaryOp); impl_expression_has_type!(ast::ExprLambda); impl_expression_has_type!(ast::ExprIf); impl_expression_has_type!(ast::ExprDict); impl_expression_has_type!(ast::ExprSet); impl_expression_has_type!(ast::ExprListComp); impl_expression_has_type!(ast::ExprSetComp); impl_expression_has_type!(ast::ExprDictComp); impl_expression_has_type!(ast::ExprGenerator); impl_expression_has_type!(ast::ExprAwait); impl_expression_has_type!(ast::ExprYield); impl_expression_has_type!(ast::ExprYieldFrom); impl_expression_has_type!(ast::ExprCompare); impl_expression_has_type!(ast::ExprCall); impl_expression_has_type!(ast::ExprFString); impl_expression_has_type!(ast::ExprTString); impl_expression_has_type!(ast::ExprStringLiteral); impl_expression_has_type!(ast::ExprBytesLiteral); impl_expression_has_type!(ast::ExprNumberLiteral); impl_expression_has_type!(ast::ExprBooleanLiteral); impl_expression_has_type!(ast::ExprNoneLiteral); impl_expression_has_type!(ast::ExprEllipsisLiteral); impl_expression_has_type!(ast::ExprAttribute); impl_expression_has_type!(ast::ExprSubscript); impl_expression_has_type!(ast::ExprStarred); impl_expression_has_type!(ast::ExprName); impl_expression_has_type!(ast::ExprList); impl_expression_has_type!(ast::ExprTuple); impl_expression_has_type!(ast::ExprSlice); impl_expression_has_type!(ast::ExprIpyEscapeCommand); impl HasType for ast::Expr { fn inferred_type<'db>(&self, model: &SemanticModel<'db>) -> Type<'db> { match self { Expr::BoolOp(inner) => inner.inferred_type(model), Expr::Named(inner) => inner.inferred_type(model), Expr::BinOp(inner) => inner.inferred_type(model), Expr::UnaryOp(inner) => inner.inferred_type(model), Expr::Lambda(inner) => inner.inferred_type(model), Expr::If(inner) => inner.inferred_type(model), Expr::Dict(inner) => inner.inferred_type(model), Expr::Set(inner) => inner.inferred_type(model), Expr::ListComp(inner) => inner.inferred_type(model), Expr::SetComp(inner) => inner.inferred_type(model), Expr::DictComp(inner) => inner.inferred_type(model), Expr::Generator(inner) => inner.inferred_type(model), Expr::Await(inner) => inner.inferred_type(model), Expr::Yield(inner) => inner.inferred_type(model), Expr::YieldFrom(inner) => inner.inferred_type(model), Expr::Compare(inner) => inner.inferred_type(model), Expr::Call(inner) => inner.inferred_type(model), Expr::FString(inner) => inner.inferred_type(model), Expr::TString(inner) => inner.inferred_type(model), Expr::StringLiteral(inner) => inner.inferred_type(model), Expr::BytesLiteral(inner) => inner.inferred_type(model), Expr::NumberLiteral(inner) => inner.inferred_type(model), Expr::BooleanLiteral(inner) => inner.inferred_type(model), Expr::NoneLiteral(inner) => inner.inferred_type(model), Expr::EllipsisLiteral(inner) => inner.inferred_type(model), Expr::Attribute(inner) => inner.inferred_type(model), Expr::Subscript(inner) => inner.inferred_type(model), Expr::Starred(inner) => inner.inferred_type(model), Expr::Name(inner) => inner.inferred_type(model), Expr::List(inner) => inner.inferred_type(model), Expr::Tuple(inner) => inner.inferred_type(model), Expr::Slice(inner) => inner.inferred_type(model), Expr::IpyEscapeCommand(inner) => inner.inferred_type(model), } } } macro_rules! impl_binding_has_ty { ($ty: ty) => { impl HasType for $ty { #[inline] fn inferred_type<'db>(&self, model: &SemanticModel<'db>) -> Type<'db> { let index = semantic_index(model.db, model.file); let binding = index.expect_single_definition(self); binding_type(model.db, binding) } } }; } impl_binding_has_ty!(ast::StmtFunctionDef); impl_binding_has_ty!(ast::StmtClassDef); impl_binding_has_ty!(ast::Parameter); impl_binding_has_ty!(ast::ParameterWithDefault); impl_binding_has_ty!(ast::ExceptHandlerExceptHandler); impl HasType for ast::Alias { fn inferred_type<'db>(&self, model: &SemanticModel<'db>) -> Type<'db> { if &self.name == "*" { return Type::Never; } let index = semantic_index(model.db, model.file); binding_type(model.db, index.expect_single_definition(self)) } } /// Implemented by types for which the semantic index tracks their scope. pub(crate) trait HasTrackedScope: HasNodeIndex {} impl HasTrackedScope for ast::Expr {} impl HasTrackedScope for ast::ExprRef<'_> {} impl HasTrackedScope for &ast::ExprRef<'_> {} // See https://github.com/astral-sh/ty/issues/572 why this implementation exists // even when we never register identifiers during semantic index building. impl HasTrackedScope for ast::Identifier {} #[cfg(test)] mod tests { use ruff_db::files::system_path_to_file; use ruff_db::parsed::parsed_module; use crate::db::tests::TestDbBuilder; use crate::{HasType, SemanticModel}; #[test] fn function_type() -> anyhow::Result<()> { let db = TestDbBuilder::new() .with_file("/src/foo.py", "def test(): pass") .build()?; let foo = system_path_to_file(&db, "/src/foo.py").unwrap(); let ast = parsed_module(&db, foo).load(&db); let function = ast.suite()[0].as_function_def_stmt().unwrap(); let model = SemanticModel::new(&db, foo); let ty = function.inferred_type(&model); assert!(ty.is_function_literal()); Ok(()) } #[test] fn class_type() -> anyhow::Result<()> { let db = TestDbBuilder::new() .with_file("/src/foo.py", "class Test: pass") .build()?; let foo = system_path_to_file(&db, "/src/foo.py").unwrap(); let ast = parsed_module(&db, foo).load(&db); let class = ast.suite()[0].as_class_def_stmt().unwrap(); let model = SemanticModel::new(&db, foo); let ty = class.inferred_type(&model); assert!(ty.is_class_literal()); Ok(()) } #[test] fn alias_type() -> anyhow::Result<()> { let db = TestDbBuilder::new() .with_file("/src/foo.py", "class Test: pass") .with_file("/src/bar.py", "from foo import Test") .build()?; let bar = system_path_to_file(&db, "/src/bar.py").unwrap(); let ast = parsed_module(&db, bar).load(&db); let import = ast.suite()[0].as_import_from_stmt().unwrap(); let alias = &import.names[0]; let model = SemanticModel::new(&db, bar); let ty = alias.inferred_type(&model); assert!(ty.is_class_literal()); Ok(()) } }