![]()
Some checks are pending
CI / Determine changes (push) Waiting to run
CI / cargo fmt (push) Waiting to run
CI / cargo clippy (push) Blocked by required conditions
CI / cargo test (linux) (push) Blocked by required conditions
CI / cargo test (linux, release) (push) Blocked by required conditions
CI / cargo test (windows) (push) Blocked by required conditions
CI / cargo test (wasm) (push) Blocked by required conditions
CI / cargo build (release) (push) Waiting to run
CI / cargo build (msrv) (push) Blocked by required conditions
CI / cargo fuzz build (push) Blocked by required conditions
CI / fuzz parser (push) Blocked by required conditions
CI / test scripts (push) Blocked by required conditions
CI / ecosystem (push) Blocked by required conditions
CI / Fuzz for new ty panics (push) Blocked by required conditions
CI / cargo shear (push) Blocked by required conditions
CI / python package (push) Waiting to run
CI / pre-commit (push) Waiting to run
CI / mkdocs (push) Waiting to run
CI / formatter instabilities and black similarity (push) Blocked by required conditions
CI / test ruff-lsp (push) Blocked by required conditions
CI / check playground (push) Blocked by required conditions
CI / benchmarks-instrumented (push) Blocked by required conditions
CI / benchmarks-walltime (push) Blocked by required conditions
[ty Playground] Release / publish (push) Waiting to run
As of [this cpython PR](https://github.com/python/cpython/pull/135996), it is not allowed to concatenate t-strings with non-t-strings, implicitly or explicitly. Expressions such as `"foo" t"{bar}"` are now syntax errors. This PR updates some AST nodes and parsing to reflect this change. The structural change is that `TStringPart` is no longer needed, since, as in the case of `BytesStringLiteral`, the only possibilities are that we have a single `TString` or a vector of such (representing an implicit concatenation of t-strings). This removes a level of nesting from many AST expressions (which is what all the snapshot changes reflect), and simplifies some logic in the implementation of visitors, for example. The other change of note is in the parser. When we meet an implicit concatenation of string-like literals, we now count the number of t-string literals. If these do not exhaust the total number of implicitly concatenated pieces, then we emit a syntax error. To recover from this syntax error, we encode any t-string pieces as _invalid_ string literals (which means we flag them as invalid, record their range, and record the value as `""`). Note that if at least one of the pieces is an f-string we prefer to parse the entire string as an f-string; otherwise we parse it as a string. This logic is exactly the same as how we currently treat `BytesStringLiteral` parsing and error recovery - and carries with it the same pros and cons. Finally, note that I have not implemented any changes in the implementation of the formatter. As far as I can tell, none are needed. I did change a few of the fixtures so that we are always concatenating t-strings with t-strings. |
||
---|---|---|
.. | ||
resources/test/fixtures | ||
src | ||
tests | ||
Cargo.toml | ||
CONTRIBUTING.md | ||
generate.py | ||
orphan_rules_in_the_formatter.svg | ||
README.md |
Ruff Formatter
The Ruff formatter is an extremely fast Python code formatter that ships as part of the ruff
CLI.
Goals
The formatter is designed to be a drop-in replacement for Black, but with an excessive focus on performance and direct integration with Ruff.
Specifically, the formatter is intended to emit near-identical output when run over Black-formatted code. When run over extensive Black-formatted projects like Django and Zulip, > 99.9% of lines are formatted identically. When migrating an existing project from Black to Ruff, you should expect to see a few differences on the margins, but the vast majority of your code should be unchanged.
If you identify deviations in your project, spot-check them against the intentional deviations enumerated below, as well as the unintentional deviations filed in the issue tracker. If you've identified a new deviation, please file an issue.
When run over non-Black-formatted code, the formatter makes some different decisions than Black, and so more deviations should be expected, especially around the treatment of end-of-line comments. For details, see Style Guide.
Getting started
Head to The Ruff Formatter for usage instructions and a comparison to Black.