ruff/crates/ruff_python_parser/src/lib.rs
Dhruv Manilawala 8f40928534
Enable token-based rules on source with syntax errors (#11950)
## Summary

This PR updates the linter, specifically the token-based rules, to work
on the tokens that come after a syntax error.

For context, the token-based rules only diagnose the tokens up to the
first lexical error. This PR builds up an error resilience by
introducing a `TokenIterWithContext` which updates the `nesting` level
and tries to reflect it with what the lexer is seeing. This isn't 100%
accurate because if the parser recovered from an unclosed parenthesis in
the middle of the line, the context won't reduce the nesting level until
it sees the newline token at the end of the line.

resolves: #11915

## Test Plan

* Add test cases for a bunch of rules that are affected by this change.
* Run the fuzzer for a long time, making sure to fix any other bugs.
2024-07-02 08:57:46 +00:00

777 lines
26 KiB
Rust

//! This crate can be used to parse Python source code into an Abstract
//! Syntax Tree.
//!
//! ## Overview
//!
//! The process by which source code is parsed into an AST can be broken down
//! into two general stages: [lexical analysis] and [parsing].
//!
//! During lexical analysis, the source code is converted into a stream of lexical
//! tokens that represent the smallest meaningful units of the language. For example,
//! the source code `print("Hello world")` would _roughly_ be converted into the following
//! stream of tokens:
//!
//! ```text
//! Name("print"), LeftParen, String("Hello world"), RightParen
//! ```
//!
//! These tokens are then consumed by the `ruff_python_parser`, which matches them against a set of
//! grammar rules to verify that the source code is syntactically valid and to construct
//! an AST that represents the source code.
//!
//! During parsing, the `ruff_python_parser` consumes the tokens generated by the lexer and constructs
//! a tree representation of the source code. The tree is made up of nodes that represent
//! the different syntactic constructs of the language. If the source code is syntactically
//! invalid, parsing fails and an error is returned. After a successful parse, the AST can
//! be used to perform further analysis on the source code. Continuing with the example
//! above, the AST generated by the `ruff_python_parser` would _roughly_ look something like this:
//!
//! ```text
//! node: Expr {
//! value: {
//! node: Call {
//! func: {
//! node: Name {
//! id: "print",
//! ctx: Load,
//! },
//! },
//! args: [
//! node: Constant {
//! value: Str("Hello World"),
//! kind: None,
//! },
//! ],
//! keywords: [],
//! },
//! },
//! },
//!```
//!
//! **Note:** The Tokens/ASTs shown above are not the exact tokens/ASTs generated by the `ruff_python_parser`.
//! Refer to the [playground](https://play.ruff.rs) for the correct representation.
//!
//! ## Source code layout
//!
//! The functionality of this crate is split into several modules:
//!
//! - token: This module contains the definition of the tokens that are generated by the lexer.
//! - [lexer]: This module contains the lexer and is responsible for generating the tokens.
//! - parser: This module contains an interface to the [Parsed] and is responsible for generating the AST.
//! - mode: This module contains the definition of the different modes that the `ruff_python_parser` can be in.
//!
//! [lexical analysis]: https://en.wikipedia.org/wiki/Lexical_analysis
//! [parsing]: https://en.wikipedia.org/wiki/Parsing
//! [lexer]: crate::lexer
use std::iter::FusedIterator;
use std::ops::Deref;
pub use crate::error::{FStringErrorType, ParseError, ParseErrorType};
pub use crate::token::{Token, TokenKind};
use crate::parser::Parser;
use ruff_python_ast::{Expr, Mod, ModExpression, ModModule, PySourceType, Suite};
use ruff_python_trivia::CommentRanges;
use ruff_text_size::{Ranged, TextRange, TextSize};
mod error;
pub mod lexer;
mod parser;
mod string;
mod token;
mod token_set;
mod token_source;
pub mod typing;
/// Parse a full Python module usually consisting of multiple lines.
///
/// This is a convenience function that can be used to parse a full Python program without having to
/// specify the [`Mode`] or the location. It is probably what you want to use most of the time.
///
/// # Example
///
/// For example, parsing a simple function definition and a call to that function:
///
/// ```
/// use ruff_python_parser::parse_module;
///
/// let source = r#"
/// def foo():
/// return 42
///
/// print(foo())
/// "#;
///
/// let module = parse_module(source);
/// assert!(module.is_ok());
/// ```
pub fn parse_module(source: &str) -> Result<Parsed<ModModule>, ParseError> {
Parser::new(source, Mode::Module)
.parse()
.try_into_module()
.unwrap()
.into_result()
}
/// Parses a single Python expression.
///
/// This convenience function can be used to parse a single expression without having to
/// specify the Mode or the location.
///
/// # Example
///
/// For example, parsing a single expression denoting the addition of two numbers:
///
/// ```
/// use ruff_python_parser::parse_expression;
///
/// let expr = parse_expression("1 + 2");
/// assert!(expr.is_ok());
/// ```
pub fn parse_expression(source: &str) -> Result<Parsed<ModExpression>, ParseError> {
Parser::new(source, Mode::Expression)
.parse()
.try_into_expression()
.unwrap()
.into_result()
}
/// Parses a Python expression for the given range in the source.
///
/// This function allows to specify the range of the expression in the source code, other than
/// that, it behaves exactly like [`parse_expression`].
///
/// # Example
///
/// Parsing one of the numeric literal which is part of an addition expression:
///
/// ```
/// use ruff_python_parser::parse_expression_range;
/// # use ruff_text_size::{TextRange, TextSize};
///
/// let parsed = parse_expression_range("11 + 22 + 33", TextRange::new(TextSize::new(5), TextSize::new(7)));
/// assert!(parsed.is_ok());
/// ```
pub fn parse_expression_range(
source: &str,
range: TextRange,
) -> Result<Parsed<ModExpression>, ParseError> {
let source = &source[..range.end().to_usize()];
Parser::new_starts_at(source, Mode::Expression, range.start())
.parse()
.try_into_expression()
.unwrap()
.into_result()
}
/// Parse the given Python source code using the specified [`Mode`].
///
/// This function is the most general function to parse Python code. Based on the [`Mode`] supplied,
/// it can be used to parse a single expression, a full Python program, an interactive expression
/// or a Python program containing IPython escape commands.
///
/// # Example
///
/// If we want to parse a simple expression, we can use the [`Mode::Expression`] mode during
/// parsing:
///
/// ```
/// use ruff_python_parser::{Mode, parse};
///
/// let parsed = parse("1 + 2", Mode::Expression);
/// assert!(parsed.is_ok());
/// ```
///
/// Alternatively, we can parse a full Python program consisting of multiple lines:
///
/// ```
/// use ruff_python_parser::{Mode, parse};
///
/// let source = r#"
/// class Greeter:
///
/// def greet(self):
/// print("Hello, world!")
/// "#;
/// let parsed = parse(source, Mode::Module);
/// assert!(parsed.is_ok());
/// ```
///
/// Additionally, we can parse a Python program containing IPython escapes:
///
/// ```
/// use ruff_python_parser::{Mode, parse};
///
/// let source = r#"
/// %timeit 1 + 2
/// ?str.replace
/// !ls
/// "#;
/// let parsed = parse(source, Mode::Ipython);
/// assert!(parsed.is_ok());
/// ```
pub fn parse(source: &str, mode: Mode) -> Result<Parsed<Mod>, ParseError> {
parse_unchecked(source, mode).into_result()
}
/// Parse the given Python source code using the specified [`Mode`].
///
/// This is same as the [`parse`] function except that it doesn't check for any [`ParseError`]
/// and returns the [`Parsed`] as is.
pub fn parse_unchecked(source: &str, mode: Mode) -> Parsed<Mod> {
Parser::new(source, mode).parse()
}
/// Parse the given Python source code using the specified [`PySourceType`].
pub fn parse_unchecked_source(source: &str, source_type: PySourceType) -> Parsed<ModModule> {
// SAFETY: Safe because `PySourceType` always parses to a `ModModule`
Parser::new(source, source_type.as_mode())
.parse()
.try_into_module()
.unwrap()
}
/// Represents the parsed source code.
#[derive(Debug, PartialEq, Clone)]
pub struct Parsed<T> {
syntax: T,
tokens: Tokens,
errors: Vec<ParseError>,
}
impl<T> Parsed<T> {
/// Returns the syntax node represented by this parsed output.
pub fn syntax(&self) -> &T {
&self.syntax
}
/// Returns all the tokens for the parsed output.
pub fn tokens(&self) -> &Tokens {
&self.tokens
}
/// Returns a list of syntax errors found during parsing.
pub fn errors(&self) -> &[ParseError] {
&self.errors
}
/// Consumes the [`Parsed`] output and returns the contained syntax node.
pub fn into_syntax(self) -> T {
self.syntax
}
/// Consumes the [`Parsed`] output and returns a list of syntax errors found during parsing.
pub fn into_errors(self) -> Vec<ParseError> {
self.errors
}
/// Returns `true` if the parsed source code is valid i.e., it has no syntax errors.
pub fn is_valid(&self) -> bool {
self.errors.is_empty()
}
/// Returns the [`Parsed`] output as a [`Result`], returning [`Ok`] if it has no syntax errors,
/// or [`Err`] containing the first [`ParseError`] encountered.
pub fn as_result(&self) -> Result<&Parsed<T>, &[ParseError]> {
if self.is_valid() {
Ok(self)
} else {
Err(&self.errors)
}
}
/// Consumes the [`Parsed`] output and returns a [`Result`] which is [`Ok`] if it has no syntax
/// errors, or [`Err`] containing the first [`ParseError`] encountered.
pub(crate) fn into_result(self) -> Result<Parsed<T>, ParseError> {
if self.is_valid() {
Ok(self)
} else {
Err(self.into_errors().into_iter().next().unwrap())
}
}
}
impl Parsed<Mod> {
/// Attempts to convert the [`Parsed<Mod>`] into a [`Parsed<ModModule>`].
///
/// This method checks if the `syntax` field of the output is a [`Mod::Module`]. If it is, the
/// method returns [`Some(Parsed<ModModule>)`] with the contained module. Otherwise, it
/// returns [`None`].
///
/// [`Some(Parsed<ModModule>)`]: Some
pub fn try_into_module(self) -> Option<Parsed<ModModule>> {
match self.syntax {
Mod::Module(module) => Some(Parsed {
syntax: module,
tokens: self.tokens,
errors: self.errors,
}),
Mod::Expression(_) => None,
}
}
/// Attempts to convert the [`Parsed<Mod>`] into a [`Parsed<ModExpression>`].
///
/// This method checks if the `syntax` field of the output is a [`Mod::Expression`]. If it is,
/// the method returns [`Some(Parsed<ModExpression>)`] with the contained expression.
/// Otherwise, it returns [`None`].
///
/// [`Some(Parsed<ModExpression>)`]: Some
pub fn try_into_expression(self) -> Option<Parsed<ModExpression>> {
match self.syntax {
Mod::Module(_) => None,
Mod::Expression(expression) => Some(Parsed {
syntax: expression,
tokens: self.tokens,
errors: self.errors,
}),
}
}
}
impl Parsed<ModModule> {
/// Returns the module body contained in this parsed output as a [`Suite`].
pub fn suite(&self) -> &Suite {
&self.syntax.body
}
/// Consumes the [`Parsed`] output and returns the module body as a [`Suite`].
pub fn into_suite(self) -> Suite {
self.syntax.body
}
}
impl Parsed<ModExpression> {
/// Returns the expression contained in this parsed output.
pub fn expr(&self) -> &Expr {
&self.syntax.body
}
/// Returns a mutable reference to the expression contained in this parsed output.
pub fn expr_mut(&mut self) -> &mut Expr {
&mut self.syntax.body
}
/// Consumes the [`Parsed`] output and returns the contained [`Expr`].
pub fn into_expr(self) -> Expr {
*self.syntax.body
}
}
/// Tokens represents a vector of lexed [`Token`].
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Tokens {
raw: Vec<Token>,
}
impl Tokens {
pub(crate) fn new(tokens: Vec<Token>) -> Tokens {
Tokens { raw: tokens }
}
/// Returns an iterator over all the tokens that provides context.
pub fn iter_with_context(&self) -> TokenIterWithContext {
TokenIterWithContext::new(&self.raw)
}
/// Returns a slice of [`Token`] that are within the given `range`.
///
/// The start and end offset of the given range should be either:
/// 1. Token boundary
/// 2. Gap between the tokens
///
/// For example, considering the following tokens and their corresponding range:
///
/// | Token | Range |
/// |---------------------|-----------|
/// | `Def` | `0..3` |
/// | `Name` | `4..7` |
/// | `Lpar` | `7..8` |
/// | `Rpar` | `8..9` |
/// | `Colon` | `9..10` |
/// | `Newline` | `10..11` |
/// | `Comment` | `15..24` |
/// | `NonLogicalNewline` | `24..25` |
/// | `Indent` | `25..29` |
/// | `Pass` | `29..33` |
///
/// Here, for (1) a token boundary is considered either the start or end offset of any of the
/// above tokens. For (2), the gap would be any offset between the `Newline` and `Comment`
/// token which are 12, 13, and 14.
///
/// Examples:
/// 1) `4..10` would give `Name`, `Lpar`, `Rpar`, `Colon`
/// 2) `11..25` would give `Comment`, `NonLogicalNewline`
/// 3) `12..25` would give same as (2) and offset 12 is in the "gap"
/// 4) `9..12` would give `Colon`, `Newline` and offset 12 is in the "gap"
/// 5) `18..27` would panic because both the start and end offset is within a token
///
/// ## Note
///
/// The returned slice can contain the [`TokenKind::Unknown`] token if there was a lexical
/// error encountered within the given range.
///
/// # Panics
///
/// If either the start or end offset of the given range is within a token range.
pub fn in_range(&self, range: TextRange) -> &[Token] {
let tokens_after_start = self.after(range.start());
match tokens_after_start.binary_search_by_key(&range.end(), Ranged::end) {
Ok(idx) => {
// If we found the token with the end offset, that token should be included in the
// return slice.
&tokens_after_start[..=idx]
}
Err(idx) => {
if let Some(token) = tokens_after_start.get(idx) {
// If it's equal to the start offset, then it's at a token boundary which is
// valid. If it's less than the start offset, then it's in the gap between the
// tokens which is valid as well.
assert!(
range.end() <= token.start(),
"End offset {:?} is inside a token range {:?}",
range.end(),
token.range()
);
}
// This index is where the token with the offset _could_ be, so that token should
// be excluded from the return slice.
&tokens_after_start[..idx]
}
}
}
/// Returns a slice of tokens after the given [`TextSize`] offset.
///
/// If the given offset is between two tokens, the returned slice will start from the following
/// token. In other words, if the offset is between the end of previous token and start of next
/// token, the returned slice will start from the next token.
///
/// # Panics
///
/// If the given offset is inside a token range.
pub fn after(&self, offset: TextSize) -> &[Token] {
match self.binary_search_by(|token| token.start().cmp(&offset)) {
Ok(idx) => &self[idx..],
Err(idx) => {
// We can't use `saturating_sub` here because a file could contain a BOM header, in
// which case the token starts at offset 3 for UTF-8 encoded file content.
if idx > 0 {
if let Some(prev) = self.get(idx - 1) {
// If it's equal to the end offset, then it's at a token boundary which is
// valid. If it's greater than the end offset, then it's in the gap between
// the tokens which is valid as well.
assert!(
offset >= prev.end(),
"Offset {:?} is inside a token range {:?}",
offset,
prev.range()
);
}
}
&self[idx..]
}
}
}
}
impl<'a> IntoIterator for &'a Tokens {
type Item = &'a Token;
type IntoIter = std::slice::Iter<'a, Token>;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
impl Deref for Tokens {
type Target = [Token];
fn deref(&self) -> &Self::Target {
&self.raw
}
}
impl From<&Tokens> for CommentRanges {
fn from(tokens: &Tokens) -> Self {
let mut ranges = vec![];
for token in tokens {
if token.kind() == TokenKind::Comment {
ranges.push(token.range());
}
}
CommentRanges::new(ranges)
}
}
/// An iterator over the [`Token`]s with context.
///
/// This struct is created by the [`iter_with_context`] method on [`Tokens`]. Refer to its
/// documentation for more details.
///
/// [`iter_with_context`]: Tokens::iter_with_context
#[derive(Debug, Clone)]
pub struct TokenIterWithContext<'a> {
inner: std::slice::Iter<'a, Token>,
nesting: u32,
}
impl<'a> TokenIterWithContext<'a> {
fn new(tokens: &'a [Token]) -> TokenIterWithContext<'a> {
TokenIterWithContext {
inner: tokens.iter(),
nesting: 0,
}
}
/// Return the nesting level the iterator is currently in.
pub const fn nesting(&self) -> u32 {
self.nesting
}
/// Returns `true` if the iterator is within a parenthesized context.
pub const fn in_parenthesized_context(&self) -> bool {
self.nesting > 0
}
/// Returns the next [`Token`] in the iterator without consuming it.
pub fn peek(&self) -> Option<&'a Token> {
self.clone().next()
}
}
impl<'a> Iterator for TokenIterWithContext<'a> {
type Item = &'a Token;
fn next(&mut self) -> Option<Self::Item> {
let token = self.inner.next()?;
match token.kind() {
TokenKind::Lpar | TokenKind::Lbrace | TokenKind::Lsqb => self.nesting += 1,
TokenKind::Rpar | TokenKind::Rbrace | TokenKind::Rsqb => {
self.nesting = self.nesting.saturating_sub(1);
}
// This mimics the behavior of re-lexing which reduces the nesting level on the lexer.
// We don't need to reduce it by 1 because unlike the lexer we see the final token
// after recovering from every unclosed parenthesis.
TokenKind::Newline if self.nesting > 0 => {
self.nesting = 0;
}
_ => {}
}
Some(token)
}
}
impl FusedIterator for TokenIterWithContext<'_> {}
/// Control in the different modes by which a source file can be parsed.
///
/// The mode argument specifies in what way code must be parsed.
#[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
pub enum Mode {
/// The code consists of a sequence of statements.
Module,
/// The code consists of a single expression.
Expression,
/// The code consists of a sequence of statements which can include the
/// escape commands that are part of IPython syntax.
///
/// ## Supported escape commands:
///
/// - [Magic command system] which is limited to [line magics] and can start
/// with `?` or `??`.
/// - [Dynamic object information] which can start with `?` or `??`.
/// - [System shell access] which can start with `!` or `!!`.
/// - [Automatic parentheses and quotes] which can start with `/`, `;`, or `,`.
///
/// [Magic command system]: https://ipython.readthedocs.io/en/stable/interactive/reference.html#magic-command-system
/// [line magics]: https://ipython.readthedocs.io/en/stable/interactive/magics.html#line-magics
/// [Dynamic object information]: https://ipython.readthedocs.io/en/stable/interactive/reference.html#dynamic-object-information
/// [System shell access]: https://ipython.readthedocs.io/en/stable/interactive/reference.html#system-shell-access
/// [Automatic parentheses and quotes]: https://ipython.readthedocs.io/en/stable/interactive/reference.html#automatic-parentheses-and-quotes
Ipython,
}
impl std::str::FromStr for Mode {
type Err = ModeParseError;
fn from_str(s: &str) -> Result<Self, ModeParseError> {
match s {
"exec" | "single" => Ok(Mode::Module),
"eval" => Ok(Mode::Expression),
"ipython" => Ok(Mode::Ipython),
_ => Err(ModeParseError),
}
}
}
/// A type that can be represented as [Mode].
pub trait AsMode {
fn as_mode(&self) -> Mode;
}
impl AsMode for PySourceType {
fn as_mode(&self) -> Mode {
match self {
PySourceType::Python | PySourceType::Stub => Mode::Module,
PySourceType::Ipynb => Mode::Ipython,
}
}
}
/// Returned when a given mode is not valid.
#[derive(Debug)]
pub struct ModeParseError;
impl std::fmt::Display for ModeParseError {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(f, r#"mode must be "exec", "eval", "ipython", or "single""#)
}
}
#[cfg(test)]
mod tests {
use std::ops::Range;
use crate::token::TokenFlags;
use super::*;
/// Test case containing a "gap" between two tokens.
///
/// Code: <https://play.ruff.rs/a3658340-6df8-42c5-be80-178744bf1193>
const TEST_CASE_WITH_GAP: [(TokenKind, Range<u32>); 10] = [
(TokenKind::Def, 0..3),
(TokenKind::Name, 4..7),
(TokenKind::Lpar, 7..8),
(TokenKind::Rpar, 8..9),
(TokenKind::Colon, 9..10),
(TokenKind::Newline, 10..11),
// Gap ||..||
(TokenKind::Comment, 15..24),
(TokenKind::NonLogicalNewline, 24..25),
(TokenKind::Indent, 25..29),
(TokenKind::Pass, 29..33),
// No newline at the end to keep the token set full of unique tokens
];
/// Helper function to create [`Tokens`] from an iterator of (kind, range).
fn new_tokens(tokens: impl Iterator<Item = (TokenKind, Range<u32>)>) -> Tokens {
Tokens::new(
tokens
.map(|(kind, range)| {
Token::new(
kind,
TextRange::new(TextSize::new(range.start), TextSize::new(range.end)),
TokenFlags::empty(),
)
})
.collect(),
)
}
#[test]
fn tokens_after_offset_at_token_start() {
let tokens = new_tokens(TEST_CASE_WITH_GAP.into_iter());
let after = tokens.after(TextSize::new(8));
assert_eq!(after.len(), 7);
assert_eq!(after.first().unwrap().kind(), TokenKind::Rpar);
}
#[test]
fn tokens_after_offset_at_token_end() {
let tokens = new_tokens(TEST_CASE_WITH_GAP.into_iter());
let after = tokens.after(TextSize::new(11));
assert_eq!(after.len(), 4);
assert_eq!(after.first().unwrap().kind(), TokenKind::Comment);
}
#[test]
fn tokens_after_offset_between_tokens() {
let tokens = new_tokens(TEST_CASE_WITH_GAP.into_iter());
let after = tokens.after(TextSize::new(13));
assert_eq!(after.len(), 4);
assert_eq!(after.first().unwrap().kind(), TokenKind::Comment);
}
#[test]
fn tokens_after_offset_at_last_token_end() {
let tokens = new_tokens(TEST_CASE_WITH_GAP.into_iter());
let after = tokens.after(TextSize::new(33));
assert_eq!(after.len(), 0);
}
#[test]
#[should_panic(expected = "Offset 5 is inside a token range 4..7")]
fn tokens_after_offset_inside_token() {
let tokens = new_tokens(TEST_CASE_WITH_GAP.into_iter());
tokens.after(TextSize::new(5));
}
#[test]
fn tokens_in_range_at_token_offset() {
let tokens = new_tokens(TEST_CASE_WITH_GAP.into_iter());
let in_range = tokens.in_range(TextRange::new(4.into(), 10.into()));
assert_eq!(in_range.len(), 4);
assert_eq!(in_range.first().unwrap().kind(), TokenKind::Name);
assert_eq!(in_range.last().unwrap().kind(), TokenKind::Colon);
}
#[test]
fn tokens_in_range_start_offset_at_token_end() {
let tokens = new_tokens(TEST_CASE_WITH_GAP.into_iter());
let in_range = tokens.in_range(TextRange::new(11.into(), 29.into()));
assert_eq!(in_range.len(), 3);
assert_eq!(in_range.first().unwrap().kind(), TokenKind::Comment);
assert_eq!(in_range.last().unwrap().kind(), TokenKind::Indent);
}
#[test]
fn tokens_in_range_end_offset_at_token_start() {
let tokens = new_tokens(TEST_CASE_WITH_GAP.into_iter());
let in_range = tokens.in_range(TextRange::new(8.into(), 15.into()));
assert_eq!(in_range.len(), 3);
assert_eq!(in_range.first().unwrap().kind(), TokenKind::Rpar);
assert_eq!(in_range.last().unwrap().kind(), TokenKind::Newline);
}
#[test]
fn tokens_in_range_start_offset_between_tokens() {
let tokens = new_tokens(TEST_CASE_WITH_GAP.into_iter());
let in_range = tokens.in_range(TextRange::new(13.into(), 29.into()));
assert_eq!(in_range.len(), 3);
assert_eq!(in_range.first().unwrap().kind(), TokenKind::Comment);
assert_eq!(in_range.last().unwrap().kind(), TokenKind::Indent);
}
#[test]
fn tokens_in_range_end_offset_between_tokens() {
let tokens = new_tokens(TEST_CASE_WITH_GAP.into_iter());
let in_range = tokens.in_range(TextRange::new(9.into(), 13.into()));
assert_eq!(in_range.len(), 2);
assert_eq!(in_range.first().unwrap().kind(), TokenKind::Colon);
assert_eq!(in_range.last().unwrap().kind(), TokenKind::Newline);
}
#[test]
#[should_panic(expected = "Offset 5 is inside a token range 4..7")]
fn tokens_in_range_start_offset_inside_token() {
let tokens = new_tokens(TEST_CASE_WITH_GAP.into_iter());
tokens.in_range(TextRange::new(5.into(), 10.into()));
}
#[test]
#[should_panic(expected = "End offset 6 is inside a token range 4..7")]
fn tokens_in_range_end_offset_inside_token() {
let tokens = new_tokens(TEST_CASE_WITH_GAP.into_iter());
tokens.in_range(TextRange::new(0.into(), 6.into()));
}
}