ruff/crates/ruff_python_ast/src/helpers.rs
Charlie Marsh d685107638
Move {AnyNodeRef, AstNode} to ruff_python_ast crate root (#8030)
This is a do-over of https://github.com/astral-sh/ruff/pull/8011, which
I accidentally merged into a non-`main` branch. Sorry!
2023-10-18 00:01:18 +00:00

1343 lines
44 KiB
Rust

use std::borrow::Cow;
use std::path::Path;
use ruff_python_trivia::CommentRanges;
use ruff_source_file::Locator;
use smallvec::SmallVec;
use ruff_text_size::{Ranged, TextRange};
use crate::call_path::CallPath;
use crate::parenthesize::parenthesized_range;
use crate::statement_visitor::{walk_body, walk_stmt, StatementVisitor};
use crate::AnyNodeRef;
use crate::{
self as ast, Arguments, CmpOp, Constant, ExceptHandler, Expr, MatchCase, Pattern, Stmt,
TypeParam,
};
/// Return `true` if the `Stmt` is a compound statement (as opposed to a simple statement).
pub const fn is_compound_statement(stmt: &Stmt) -> bool {
matches!(
stmt,
Stmt::FunctionDef(_)
| Stmt::ClassDef(_)
| Stmt::While(_)
| Stmt::For(_)
| Stmt::Match(_)
| Stmt::With(_)
| Stmt::If(_)
| Stmt::Try(_)
)
}
fn is_iterable_initializer<F>(id: &str, is_builtin: F) -> bool
where
F: Fn(&str) -> bool,
{
matches!(id, "list" | "tuple" | "set" | "dict" | "frozenset") && is_builtin(id)
}
/// Return `true` if the `Expr` contains an expression that appears to include a
/// side-effect (like a function call).
///
/// Accepts a closure that determines whether a given name (e.g., `"list"`) is a Python builtin.
pub fn contains_effect<F>(expr: &Expr, is_builtin: F) -> bool
where
F: Fn(&str) -> bool,
{
any_over_expr(expr, &|expr| {
// Accept empty initializers.
if let Expr::Call(ast::ExprCall {
func,
arguments: Arguments { args, keywords, .. },
range: _,
}) = expr
{
// Ex) `list()`
if args.is_empty() && keywords.is_empty() {
if let Expr::Name(ast::ExprName { id, .. }) = func.as_ref() {
if !is_iterable_initializer(id.as_str(), |id| is_builtin(id)) {
return true;
}
return false;
}
}
}
// Avoid false positive for overloaded operators.
if let Expr::BinOp(ast::ExprBinOp { left, right, .. }) = expr {
if !matches!(
left.as_ref(),
Expr::Constant(_)
| Expr::FString(_)
| Expr::List(_)
| Expr::Tuple(_)
| Expr::Set(_)
| Expr::Dict(_)
| Expr::ListComp(_)
| Expr::SetComp(_)
| Expr::DictComp(_)
) {
return true;
}
if !matches!(
right.as_ref(),
Expr::Constant(_)
| Expr::FString(_)
| Expr::List(_)
| Expr::Tuple(_)
| Expr::Set(_)
| Expr::Dict(_)
| Expr::ListComp(_)
| Expr::SetComp(_)
| Expr::DictComp(_)
) {
return true;
}
return false;
}
// Otherwise, avoid all complex expressions.
matches!(
expr,
Expr::Await(_)
| Expr::Call(_)
| Expr::DictComp(_)
| Expr::GeneratorExp(_)
| Expr::ListComp(_)
| Expr::SetComp(_)
| Expr::Subscript(_)
| Expr::Yield(_)
| Expr::YieldFrom(_)
| Expr::IpyEscapeCommand(_)
)
})
}
/// Call `func` over every `Expr` in `expr`, returning `true` if any expression
/// returns `true`..
pub fn any_over_expr(expr: &Expr, func: &dyn Fn(&Expr) -> bool) -> bool {
if func(expr) {
return true;
}
match expr {
Expr::BoolOp(ast::ExprBoolOp { values, .. })
| Expr::FString(ast::ExprFString { values, .. }) => {
values.iter().any(|expr| any_over_expr(expr, func))
}
Expr::NamedExpr(ast::ExprNamedExpr {
target,
value,
range: _,
}) => any_over_expr(target, func) || any_over_expr(value, func),
Expr::BinOp(ast::ExprBinOp { left, right, .. }) => {
any_over_expr(left, func) || any_over_expr(right, func)
}
Expr::UnaryOp(ast::ExprUnaryOp { operand, .. }) => any_over_expr(operand, func),
Expr::Lambda(ast::ExprLambda { body, .. }) => any_over_expr(body, func),
Expr::IfExp(ast::ExprIfExp {
test,
body,
orelse,
range: _,
}) => any_over_expr(test, func) || any_over_expr(body, func) || any_over_expr(orelse, func),
Expr::Dict(ast::ExprDict {
keys,
values,
range: _,
}) => values
.iter()
.chain(keys.iter().flatten())
.any(|expr| any_over_expr(expr, func)),
Expr::Set(ast::ExprSet { elts, range: _ })
| Expr::List(ast::ExprList { elts, range: _, .. })
| Expr::Tuple(ast::ExprTuple { elts, range: _, .. }) => {
elts.iter().any(|expr| any_over_expr(expr, func))
}
Expr::ListComp(ast::ExprListComp {
elt,
generators,
range: _,
})
| Expr::SetComp(ast::ExprSetComp {
elt,
generators,
range: _,
})
| Expr::GeneratorExp(ast::ExprGeneratorExp {
elt,
generators,
range: _,
}) => {
any_over_expr(elt, func)
|| generators.iter().any(|generator| {
any_over_expr(&generator.target, func)
|| any_over_expr(&generator.iter, func)
|| generator.ifs.iter().any(|expr| any_over_expr(expr, func))
})
}
Expr::DictComp(ast::ExprDictComp {
key,
value,
generators,
range: _,
}) => {
any_over_expr(key, func)
|| any_over_expr(value, func)
|| generators.iter().any(|generator| {
any_over_expr(&generator.target, func)
|| any_over_expr(&generator.iter, func)
|| generator.ifs.iter().any(|expr| any_over_expr(expr, func))
})
}
Expr::Await(ast::ExprAwait { value, range: _ })
| Expr::YieldFrom(ast::ExprYieldFrom { value, range: _ })
| Expr::Attribute(ast::ExprAttribute {
value, range: _, ..
})
| Expr::Starred(ast::ExprStarred {
value, range: _, ..
}) => any_over_expr(value, func),
Expr::Yield(ast::ExprYield { value, range: _ }) => value
.as_ref()
.is_some_and(|value| any_over_expr(value, func)),
Expr::Compare(ast::ExprCompare {
left, comparators, ..
}) => any_over_expr(left, func) || comparators.iter().any(|expr| any_over_expr(expr, func)),
Expr::Call(ast::ExprCall {
func: call_func,
arguments: Arguments { args, keywords, .. },
range: _,
}) => {
any_over_expr(call_func, func)
// Note that this is the evaluation order but not necessarily the declaration order
// (e.g. for `f(*args, a=2, *args2, **kwargs)` it's not)
|| args.iter().any(|expr| any_over_expr(expr, func))
|| keywords
.iter()
.any(|keyword| any_over_expr(&keyword.value, func))
}
Expr::FormattedValue(ast::ExprFormattedValue {
value, format_spec, ..
}) => {
any_over_expr(value, func)
|| format_spec
.as_ref()
.is_some_and(|value| any_over_expr(value, func))
}
Expr::Subscript(ast::ExprSubscript { value, slice, .. }) => {
any_over_expr(value, func) || any_over_expr(slice, func)
}
Expr::Slice(ast::ExprSlice {
lower,
upper,
step,
range: _,
}) => {
lower
.as_ref()
.is_some_and(|value| any_over_expr(value, func))
|| upper
.as_ref()
.is_some_and(|value| any_over_expr(value, func))
|| step
.as_ref()
.is_some_and(|value| any_over_expr(value, func))
}
Expr::Name(_) | Expr::Constant(_) => false,
Expr::IpyEscapeCommand(_) => false,
}
}
pub fn any_over_type_param(type_param: &TypeParam, func: &dyn Fn(&Expr) -> bool) -> bool {
match type_param {
TypeParam::TypeVar(ast::TypeParamTypeVar { bound, .. }) => bound
.as_ref()
.is_some_and(|value| any_over_expr(value, func)),
TypeParam::TypeVarTuple(ast::TypeParamTypeVarTuple { .. }) => false,
TypeParam::ParamSpec(ast::TypeParamParamSpec { .. }) => false,
}
}
pub fn any_over_pattern(pattern: &Pattern, func: &dyn Fn(&Expr) -> bool) -> bool {
match pattern {
Pattern::MatchValue(ast::PatternMatchValue { value, range: _ }) => {
any_over_expr(value, func)
}
Pattern::MatchSingleton(_) => false,
Pattern::MatchSequence(ast::PatternMatchSequence { patterns, range: _ }) => patterns
.iter()
.any(|pattern| any_over_pattern(pattern, func)),
Pattern::MatchMapping(ast::PatternMatchMapping { keys, patterns, .. }) => {
keys.iter().any(|key| any_over_expr(key, func))
|| patterns
.iter()
.any(|pattern| any_over_pattern(pattern, func))
}
Pattern::MatchClass(ast::PatternMatchClass { cls, arguments, .. }) => {
any_over_expr(cls, func)
|| arguments
.patterns
.iter()
.any(|pattern| any_over_pattern(pattern, func))
|| arguments
.keywords
.iter()
.any(|keyword| any_over_pattern(&keyword.pattern, func))
}
Pattern::MatchStar(_) => false,
Pattern::MatchAs(ast::PatternMatchAs { pattern, .. }) => pattern
.as_ref()
.is_some_and(|pattern| any_over_pattern(pattern, func)),
Pattern::MatchOr(ast::PatternMatchOr { patterns, range: _ }) => patterns
.iter()
.any(|pattern| any_over_pattern(pattern, func)),
}
}
pub fn any_over_stmt(stmt: &Stmt, func: &dyn Fn(&Expr) -> bool) -> bool {
match stmt {
Stmt::FunctionDef(ast::StmtFunctionDef {
parameters,
type_params,
body,
decorator_list,
returns,
..
}) => {
parameters
.posonlyargs
.iter()
.chain(parameters.args.iter().chain(parameters.kwonlyargs.iter()))
.any(|parameter| {
parameter
.default
.as_ref()
.is_some_and(|expr| any_over_expr(expr, func))
|| parameter
.parameter
.annotation
.as_ref()
.is_some_and(|expr| any_over_expr(expr, func))
})
|| parameters.vararg.as_ref().is_some_and(|parameter| {
parameter
.annotation
.as_ref()
.is_some_and(|expr| any_over_expr(expr, func))
})
|| parameters.kwarg.as_ref().is_some_and(|parameter| {
parameter
.annotation
.as_ref()
.is_some_and(|expr| any_over_expr(expr, func))
})
|| type_params.as_ref().is_some_and(|type_params| {
type_params
.iter()
.any(|type_param| any_over_type_param(type_param, func))
})
|| body.iter().any(|stmt| any_over_stmt(stmt, func))
|| decorator_list
.iter()
.any(|decorator| any_over_expr(&decorator.expression, func))
|| returns
.as_ref()
.is_some_and(|value| any_over_expr(value, func))
}
Stmt::ClassDef(ast::StmtClassDef {
arguments,
type_params,
body,
decorator_list,
..
}) => {
// Note that e.g. `class A(*args, a=2, *args2, **kwargs): pass` is a valid class
// definition
arguments
.as_deref()
.is_some_and(|Arguments { args, keywords, .. }| {
args.iter().any(|expr| any_over_expr(expr, func))
|| keywords
.iter()
.any(|keyword| any_over_expr(&keyword.value, func))
})
|| type_params.as_ref().is_some_and(|type_params| {
type_params
.iter()
.any(|type_param| any_over_type_param(type_param, func))
})
|| body.iter().any(|stmt| any_over_stmt(stmt, func))
|| decorator_list
.iter()
.any(|decorator| any_over_expr(&decorator.expression, func))
}
Stmt::Return(ast::StmtReturn { value, range: _ }) => value
.as_ref()
.is_some_and(|value| any_over_expr(value, func)),
Stmt::Delete(ast::StmtDelete { targets, range: _ }) => {
targets.iter().any(|expr| any_over_expr(expr, func))
}
Stmt::TypeAlias(ast::StmtTypeAlias {
name,
type_params,
value,
..
}) => {
any_over_expr(name, func)
|| type_params.as_ref().is_some_and(|type_params| {
type_params
.iter()
.any(|type_param| any_over_type_param(type_param, func))
})
|| any_over_expr(value, func)
}
Stmt::Assign(ast::StmtAssign { targets, value, .. }) => {
targets.iter().any(|expr| any_over_expr(expr, func)) || any_over_expr(value, func)
}
Stmt::AugAssign(ast::StmtAugAssign { target, value, .. }) => {
any_over_expr(target, func) || any_over_expr(value, func)
}
Stmt::AnnAssign(ast::StmtAnnAssign {
target,
annotation,
value,
..
}) => {
any_over_expr(target, func)
|| any_over_expr(annotation, func)
|| value
.as_ref()
.is_some_and(|value| any_over_expr(value, func))
}
Stmt::For(ast::StmtFor {
target,
iter,
body,
orelse,
..
}) => {
any_over_expr(target, func)
|| any_over_expr(iter, func)
|| any_over_body(body, func)
|| any_over_body(orelse, func)
}
Stmt::While(ast::StmtWhile {
test,
body,
orelse,
range: _,
}) => any_over_expr(test, func) || any_over_body(body, func) || any_over_body(orelse, func),
Stmt::If(ast::StmtIf {
test,
body,
elif_else_clauses,
range: _,
}) => {
any_over_expr(test, func)
|| any_over_body(body, func)
|| elif_else_clauses.iter().any(|clause| {
clause
.test
.as_ref()
.is_some_and(|test| any_over_expr(test, func))
|| any_over_body(&clause.body, func)
})
}
Stmt::With(ast::StmtWith { items, body, .. }) => {
items.iter().any(|with_item| {
any_over_expr(&with_item.context_expr, func)
|| with_item
.optional_vars
.as_ref()
.is_some_and(|expr| any_over_expr(expr, func))
}) || any_over_body(body, func)
}
Stmt::Raise(ast::StmtRaise {
exc,
cause,
range: _,
}) => {
exc.as_ref().is_some_and(|value| any_over_expr(value, func))
|| cause
.as_ref()
.is_some_and(|value| any_over_expr(value, func))
}
Stmt::Try(ast::StmtTry {
body,
handlers,
orelse,
finalbody,
is_star: _,
range: _,
}) => {
any_over_body(body, func)
|| handlers.iter().any(|handler| {
let ExceptHandler::ExceptHandler(ast::ExceptHandlerExceptHandler {
type_,
body,
..
}) = handler;
type_.as_ref().is_some_and(|expr| any_over_expr(expr, func))
|| any_over_body(body, func)
})
|| any_over_body(orelse, func)
|| any_over_body(finalbody, func)
}
Stmt::Assert(ast::StmtAssert {
test,
msg,
range: _,
}) => {
any_over_expr(test, func)
|| msg.as_ref().is_some_and(|value| any_over_expr(value, func))
}
Stmt::Match(ast::StmtMatch {
subject,
cases,
range: _,
}) => {
any_over_expr(subject, func)
|| cases.iter().any(|case| {
let MatchCase {
pattern,
guard,
body,
range: _,
} = case;
any_over_pattern(pattern, func)
|| guard.as_ref().is_some_and(|expr| any_over_expr(expr, func))
|| any_over_body(body, func)
})
}
Stmt::Import(_) => false,
Stmt::ImportFrom(_) => false,
Stmt::Global(_) => false,
Stmt::Nonlocal(_) => false,
Stmt::Expr(ast::StmtExpr { value, range: _ }) => any_over_expr(value, func),
Stmt::Pass(_) | Stmt::Break(_) | Stmt::Continue(_) => false,
Stmt::IpyEscapeCommand(_) => false,
}
}
pub fn any_over_body(body: &[Stmt], func: &dyn Fn(&Expr) -> bool) -> bool {
body.iter().any(|stmt| any_over_stmt(stmt, func))
}
pub fn is_dunder(id: &str) -> bool {
id.starts_with("__") && id.ends_with("__")
}
/// Return `true` if the [`Stmt`] is an assignment to a dunder (like `__all__`).
pub fn is_assignment_to_a_dunder(stmt: &Stmt) -> bool {
// Check whether it's an assignment to a dunder, with or without a type
// annotation. This is what pycodestyle (as of 2.9.1) does.
match stmt {
Stmt::Assign(ast::StmtAssign { targets, .. }) => {
if let [Expr::Name(ast::ExprName { id, .. })] = targets.as_slice() {
is_dunder(id)
} else {
false
}
}
Stmt::AnnAssign(ast::StmtAnnAssign { target, .. }) => {
if let Expr::Name(ast::ExprName { id, .. }) = target.as_ref() {
is_dunder(id)
} else {
false
}
}
_ => false,
}
}
/// Return `true` if the [`Expr`] is a singleton (`None`, `True`, `False`, or
/// `...`).
pub const fn is_singleton(expr: &Expr) -> bool {
matches!(
expr,
Expr::Constant(ast::ExprConstant {
value: Constant::None | Constant::Bool(_) | Constant::Ellipsis,
..
})
)
}
/// Return `true` if the [`Expr`] is a constant or tuple of constants.
pub fn is_constant(expr: &Expr) -> bool {
match expr {
Expr::Constant(_) => true,
Expr::Tuple(ast::ExprTuple { elts, .. }) => elts.iter().all(is_constant),
_ => false,
}
}
/// Return `true` if the [`Expr`] is a non-singleton constant.
pub fn is_constant_non_singleton(expr: &Expr) -> bool {
is_constant(expr) && !is_singleton(expr)
}
/// Return `true` if an [`Expr`] is `None`.
pub const fn is_const_none(expr: &Expr) -> bool {
matches!(
expr,
Expr::Constant(ast::ExprConstant {
value: Constant::None,
..
}),
)
}
/// Return `true` if an [`Expr`] is `True`.
pub const fn is_const_true(expr: &Expr) -> bool {
matches!(
expr,
Expr::Constant(ast::ExprConstant {
value: Constant::Bool(true),
..
}),
)
}
/// Return `true` if an [`Expr`] is `False`.
pub const fn is_const_false(expr: &Expr) -> bool {
matches!(
expr,
Expr::Constant(ast::ExprConstant {
value: Constant::Bool(false),
..
}),
)
}
/// Extract the names of all handled exceptions.
pub fn extract_handled_exceptions(handlers: &[ExceptHandler]) -> Vec<&Expr> {
let mut handled_exceptions = Vec::new();
for handler in handlers {
match handler {
ExceptHandler::ExceptHandler(ast::ExceptHandlerExceptHandler { type_, .. }) => {
if let Some(type_) = type_ {
if let Expr::Tuple(ast::ExprTuple { elts, .. }) = &type_.as_ref() {
for type_ in elts {
handled_exceptions.push(type_);
}
} else {
handled_exceptions.push(type_);
}
}
}
}
}
handled_exceptions
}
/// Given an [`Expr`] that can be callable or not (like a decorator, which could
/// be used with or without explicit call syntax), return the underlying
/// callable.
pub fn map_callable(decorator: &Expr) -> &Expr {
if let Expr::Call(ast::ExprCall { func, .. }) = decorator {
// Ex) `@decorator()`
func
} else {
// Ex) `@decorator`
decorator
}
}
/// Given an [`Expr`] that can be callable or not (like a decorator, which could
/// be used with or without explicit call syntax), return the underlying
/// callable.
pub fn map_subscript(expr: &Expr) -> &Expr {
if let Expr::Subscript(ast::ExprSubscript { value, .. }) = expr {
// Ex) `Iterable[T]`
value
} else {
// Ex) `Iterable`
expr
}
}
/// Given an [`Expr`] that can be starred, return the underlying starred expression.
pub fn map_starred(expr: &Expr) -> &Expr {
if let Expr::Starred(ast::ExprStarred { value, .. }) = expr {
// Ex) `*args`
value
} else {
// Ex) `args`
expr
}
}
/// Return `true` if the body uses `locals()`, `globals()`, `vars()`, `eval()`.
///
/// Accepts a closure that determines whether a given name (e.g., `"list"`) is a Python builtin.
pub fn uses_magic_variable_access<F>(body: &[Stmt], is_builtin: F) -> bool
where
F: Fn(&str) -> bool,
{
any_over_body(body, &|expr| {
if let Expr::Call(ast::ExprCall { func, .. }) = expr {
if let Expr::Name(ast::ExprName { id, .. }) = func.as_ref() {
if matches!(id.as_str(), "locals" | "globals" | "vars" | "exec" | "eval") {
if is_builtin(id.as_str()) {
return true;
}
}
}
}
false
})
}
/// Format the module reference name for a relative import.
///
/// # Examples
///
/// ```rust
/// # use ruff_python_ast::helpers::format_import_from;
///
/// assert_eq!(format_import_from(None, None), "".to_string());
/// assert_eq!(format_import_from(Some(1), None), ".".to_string());
/// assert_eq!(format_import_from(Some(1), Some("foo")), ".foo".to_string());
/// ```
pub fn format_import_from(level: Option<u32>, module: Option<&str>) -> String {
let mut module_name = String::with_capacity(16);
if let Some(level) = level {
for _ in 0..level {
module_name.push('.');
}
}
if let Some(module) = module {
module_name.push_str(module);
}
module_name
}
/// Format the member reference name for a relative import.
///
/// # Examples
///
/// ```rust
/// # use ruff_python_ast::helpers::format_import_from_member;
///
/// assert_eq!(format_import_from_member(None, None, "bar"), "bar".to_string());
/// assert_eq!(format_import_from_member(Some(1), None, "bar"), ".bar".to_string());
/// assert_eq!(format_import_from_member(Some(1), Some("foo"), "bar"), ".foo.bar".to_string());
/// ```
pub fn format_import_from_member(level: Option<u32>, module: Option<&str>, member: &str) -> String {
let mut qualified_name = String::with_capacity(
(level.unwrap_or(0) as usize)
+ module.as_ref().map_or(0, |module| module.len())
+ 1
+ member.len(),
);
if let Some(level) = level {
for _ in 0..level {
qualified_name.push('.');
}
}
if let Some(module) = module {
qualified_name.push_str(module);
qualified_name.push('.');
}
qualified_name.push_str(member);
qualified_name
}
/// Create a module path from a (package, path) pair.
///
/// For example, if the package is `foo/bar` and the path is `foo/bar/baz.py`,
/// the call path is `["baz"]`.
pub fn to_module_path(package: &Path, path: &Path) -> Option<Vec<String>> {
path.strip_prefix(package.parent()?)
.ok()?
.iter()
.map(Path::new)
.map(Path::file_stem)
.map(|path| path.and_then(|path| path.to_os_string().into_string().ok()))
.collect::<Option<Vec<String>>>()
}
/// Format the call path for a relative import.
///
/// # Examples
///
/// ```rust
/// # use ruff_python_ast::helpers::collect_import_from_member;
///
/// assert_eq!(collect_import_from_member(None, None, "bar").as_slice(), ["bar"]);
/// assert_eq!(collect_import_from_member(Some(1), None, "bar").as_slice(), [".", "bar"]);
/// assert_eq!(collect_import_from_member(Some(1), Some("foo"), "bar").as_slice(), [".", "foo", "bar"]);
/// ```
pub fn collect_import_from_member<'a>(
level: Option<u32>,
module: Option<&'a str>,
member: &'a str,
) -> CallPath<'a> {
let mut call_path: CallPath = SmallVec::with_capacity(
level.unwrap_or_default() as usize
+ module
.map(|module| module.split('.').count())
.unwrap_or_default()
+ 1,
);
// Include the dots as standalone segments.
if let Some(level) = level {
if level > 0 {
for _ in 0..level {
call_path.push(".");
}
}
}
// Add the remaining segments.
if let Some(module) = module {
call_path.extend(module.split('.'));
}
// Add the member.
call_path.push(member);
call_path
}
/// Format the call path for a relative import, or `None` if the relative import extends beyond
/// the root module.
pub fn from_relative_import<'a>(
// The path from which the import is relative.
module: &'a [String],
// The path of the import itself (e.g., given `from ..foo import bar`, `[".", ".", "foo", "bar]`).
import: &[&'a str],
// The remaining segments to the call path (e.g., given `bar.baz`, `["baz"]`).
tail: &[&'a str],
) -> Option<CallPath<'a>> {
let mut call_path: CallPath = SmallVec::with_capacity(module.len() + import.len() + tail.len());
// Start with the module path.
call_path.extend(module.iter().map(String::as_str));
// Remove segments based on the number of dots.
for segment in import {
if *segment == "." {
if call_path.is_empty() {
return None;
}
call_path.pop();
} else {
call_path.push(segment);
}
}
// Add the remaining segments.
call_path.extend_from_slice(tail);
Some(call_path)
}
/// Given an imported module (based on its relative import level and module name), return the
/// fully-qualified module path.
pub fn resolve_imported_module_path<'a>(
level: Option<u32>,
module: Option<&'a str>,
module_path: Option<&[String]>,
) -> Option<Cow<'a, str>> {
let Some(level) = level else {
return Some(Cow::Borrowed(module.unwrap_or("")));
};
if level == 0 {
return Some(Cow::Borrowed(module.unwrap_or("")));
}
let Some(module_path) = module_path else {
return None;
};
if level as usize >= module_path.len() {
return None;
}
let mut qualified_path = module_path[..module_path.len() - level as usize].join(".");
if let Some(module) = module {
if !qualified_path.is_empty() {
qualified_path.push('.');
}
qualified_path.push_str(module);
}
Some(Cow::Owned(qualified_path))
}
/// A [`StatementVisitor`] that collects all `return` statements in a function or method.
#[derive(Default)]
pub struct ReturnStatementVisitor<'a> {
pub returns: Vec<&'a ast::StmtReturn>,
}
impl<'a, 'b> StatementVisitor<'b> for ReturnStatementVisitor<'a>
where
'b: 'a,
{
fn visit_stmt(&mut self, stmt: &'b Stmt) {
match stmt {
Stmt::FunctionDef(_) | Stmt::ClassDef(_) => {
// Don't recurse.
}
Stmt::Return(stmt) => self.returns.push(stmt),
_ => walk_stmt(self, stmt),
}
}
}
/// A [`StatementVisitor`] that collects all `raise` statements in a function or method.
#[derive(Default)]
pub struct RaiseStatementVisitor<'a> {
pub raises: Vec<(TextRange, Option<&'a Expr>, Option<&'a Expr>)>,
}
impl<'a, 'b> StatementVisitor<'b> for RaiseStatementVisitor<'b>
where
'b: 'a,
{
fn visit_stmt(&mut self, stmt: &'b Stmt) {
match stmt {
Stmt::Raise(ast::StmtRaise {
exc,
cause,
range: _,
}) => {
self.raises
.push((stmt.range(), exc.as_deref(), cause.as_deref()));
}
Stmt::ClassDef(_) | Stmt::FunctionDef(_) | Stmt::Try(_) => {}
Stmt::If(ast::StmtIf {
body,
elif_else_clauses,
..
}) => {
walk_body(self, body);
for clause in elif_else_clauses {
self.visit_elif_else_clause(clause);
}
}
Stmt::While(ast::StmtWhile { body, .. })
| Stmt::With(ast::StmtWith { body, .. })
| Stmt::For(ast::StmtFor { body, .. }) => {
walk_body(self, body);
}
Stmt::Match(ast::StmtMatch { cases, .. }) => {
for case in cases {
walk_body(self, &case.body);
}
}
_ => {}
}
}
}
/// Return `true` if a `Stmt` is a docstring.
pub fn is_docstring_stmt(stmt: &Stmt) -> bool {
if let Stmt::Expr(ast::StmtExpr { value, range: _ }) = stmt {
matches!(
value.as_ref(),
Expr::Constant(ast::ExprConstant {
value: Constant::Str { .. },
..
})
)
} else {
false
}
}
/// Check if a node is part of a conditional branch.
pub fn on_conditional_branch<'a>(parents: &mut impl Iterator<Item = &'a Stmt>) -> bool {
parents.any(|parent| {
if matches!(parent, Stmt::If(_) | Stmt::While(_) | Stmt::Match(_)) {
return true;
}
if let Stmt::Expr(ast::StmtExpr { value, range: _ }) = parent {
if value.is_if_exp_expr() {
return true;
}
}
false
})
}
/// Check if a node is in a nested block.
pub fn in_nested_block<'a>(mut parents: impl Iterator<Item = &'a Stmt>) -> bool {
parents.any(|parent| {
matches!(
parent,
Stmt::Try(_) | Stmt::If(_) | Stmt::With(_) | Stmt::Match(_)
)
})
}
/// Check if a node represents an unpacking assignment.
pub fn is_unpacking_assignment(parent: &Stmt, child: &Expr) -> bool {
match parent {
Stmt::With(ast::StmtWith { items, .. }) => items.iter().any(|item| {
if let Some(optional_vars) = &item.optional_vars {
if optional_vars.is_tuple_expr() {
if any_over_expr(optional_vars, &|expr| expr == child) {
return true;
}
}
}
false
}),
Stmt::Assign(ast::StmtAssign { targets, value, .. }) => {
// In `(a, b) = (1, 2)`, `(1, 2)` is the target, and it is a tuple.
let value_is_tuple = matches!(
value.as_ref(),
Expr::Set(_) | Expr::List(_) | Expr::Tuple(_)
);
// In `(a, b) = coords = (1, 2)`, `(a, b)` and `coords` are the targets, and
// `(a, b)` is a tuple. (We use "tuple" as a placeholder for any
// unpackable expression.)
let targets_are_tuples = targets
.iter()
.all(|item| matches!(item, Expr::Set(_) | Expr::List(_) | Expr::Tuple(_)));
// If we're looking at `a` in `(a, b) = coords = (1, 2)`, then we should
// identify that the current expression is in a tuple.
let child_in_tuple = targets_are_tuples
|| targets.iter().any(|item| {
matches!(item, Expr::Set(_) | Expr::List(_) | Expr::Tuple(_))
&& any_over_expr(item, &|expr| expr == child)
});
// If our child is a tuple, and value is not, it's always an unpacking
// expression. Ex) `x, y = tup`
if child_in_tuple && !value_is_tuple {
return true;
}
// If our child isn't a tuple, but value is, it's never an unpacking expression.
// Ex) `coords = (1, 2)`
if !child_in_tuple && value_is_tuple {
return false;
}
// If our target and the value are both tuples, then it's an unpacking
// expression assuming there's at least one non-tuple child.
// Ex) Given `(x, y) = coords = 1, 2`, `(x, y)` is considered an unpacking
// expression. Ex) Given `(x, y) = (a, b) = 1, 2`, `(x, y)` isn't
// considered an unpacking expression.
if child_in_tuple && value_is_tuple {
return !targets_are_tuples;
}
false
}
_ => false,
}
}
#[derive(Copy, Clone, Debug, PartialEq, is_macro::Is)]
pub enum Truthiness {
// An expression evaluates to `False`.
Falsey,
// An expression evaluates to `True`.
Truthy,
// An expression evaluates to an unknown value (e.g., a variable `x` of unknown type).
Unknown,
}
impl From<Option<bool>> for Truthiness {
fn from(value: Option<bool>) -> Self {
match value {
Some(true) => Truthiness::Truthy,
Some(false) => Truthiness::Falsey,
None => Truthiness::Unknown,
}
}
}
impl From<Truthiness> for Option<bool> {
fn from(truthiness: Truthiness) -> Self {
match truthiness {
Truthiness::Truthy => Some(true),
Truthiness::Falsey => Some(false),
Truthiness::Unknown => None,
}
}
}
impl Truthiness {
pub fn from_expr<F>(expr: &Expr, is_builtin: F) -> Self
where
F: Fn(&str) -> bool,
{
match expr {
Expr::Constant(ast::ExprConstant { value, .. }) => match value {
Constant::Bool(value) => Some(*value),
Constant::None => Some(false),
Constant::Str(ast::StringConstant { value, .. }) => Some(!value.is_empty()),
Constant::Bytes(bytes) => Some(!bytes.is_empty()),
Constant::Int(int) => Some(*int != 0),
Constant::Float(float) => Some(*float != 0.0),
Constant::Complex { real, imag } => Some(*real != 0.0 || *imag != 0.0),
Constant::Ellipsis => Some(true),
},
Expr::FString(ast::ExprFString { values, .. }) => {
if values.is_empty() {
Some(false)
} else if values.iter().any(|value| {
if let Expr::Constant(ast::ExprConstant {
value: Constant::Str(ast::StringConstant { value, .. }),
..
}) = &value
{
!value.is_empty()
} else {
false
}
}) {
Some(true)
} else {
None
}
}
Expr::List(ast::ExprList { elts, .. })
| Expr::Set(ast::ExprSet { elts, .. })
| Expr::Tuple(ast::ExprTuple { elts, .. }) => Some(!elts.is_empty()),
Expr::Dict(ast::ExprDict { keys, .. }) => Some(!keys.is_empty()),
Expr::Call(ast::ExprCall {
func,
arguments: Arguments { args, keywords, .. },
..
}) => {
if let Expr::Name(ast::ExprName { id, .. }) = func.as_ref() {
if is_iterable_initializer(id.as_str(), |id| is_builtin(id)) {
if args.is_empty() && keywords.is_empty() {
// Ex) `list()`
Some(false)
} else if args.len() == 1 && keywords.is_empty() {
// Ex) `list([1, 2, 3])`
Self::from_expr(&args[0], is_builtin).into()
} else {
None
}
} else {
None
}
} else {
None
}
}
_ => None,
}
.into()
}
}
pub fn generate_comparison(
left: &Expr,
ops: &[CmpOp],
comparators: &[Expr],
parent: AnyNodeRef,
comment_ranges: &CommentRanges,
locator: &Locator,
) -> String {
let start = left.start();
let end = comparators.last().map_or_else(|| left.end(), Ranged::end);
let mut contents = String::with_capacity(usize::from(end - start));
// Add the left side of the comparison.
contents.push_str(
locator.slice(
parenthesized_range(left.into(), parent, comment_ranges, locator.contents())
.unwrap_or(left.range()),
),
);
for (op, comparator) in ops.iter().zip(comparators) {
// Add the operator.
contents.push_str(match op {
CmpOp::Eq => " == ",
CmpOp::NotEq => " != ",
CmpOp::Lt => " < ",
CmpOp::LtE => " <= ",
CmpOp::Gt => " > ",
CmpOp::GtE => " >= ",
CmpOp::In => " in ",
CmpOp::NotIn => " not in ",
CmpOp::Is => " is ",
CmpOp::IsNot => " is not ",
});
// Add the right side of the comparison.
contents.push_str(
locator.slice(
parenthesized_range(
comparator.into(),
parent,
comment_ranges,
locator.contents(),
)
.unwrap_or(comparator.range()),
),
);
}
contents
}
#[cfg(test)]
mod tests {
use std::borrow::Cow;
use std::cell::RefCell;
use std::vec;
use ruff_text_size::TextRange;
use crate::helpers::{any_over_stmt, any_over_type_param, resolve_imported_module_path};
use crate::{
Constant, Expr, ExprConstant, ExprContext, ExprName, Identifier, Int, Stmt, StmtTypeAlias,
TypeParam, TypeParamParamSpec, TypeParamTypeVar, TypeParamTypeVarTuple, TypeParams,
};
#[test]
fn resolve_import() {
// Return the module directly.
assert_eq!(
resolve_imported_module_path(None, Some("foo"), None),
Some(Cow::Borrowed("foo"))
);
// Construct the module path from the calling module's path.
assert_eq!(
resolve_imported_module_path(
Some(1),
Some("foo"),
Some(&["bar".to_string(), "baz".to_string()])
),
Some(Cow::Owned("bar.foo".to_string()))
);
// We can't return the module if it's a relative import, and we don't know the calling
// module's path.
assert_eq!(
resolve_imported_module_path(Some(1), Some("foo"), None),
None
);
// We can't return the module if it's a relative import, and the path goes beyond the
// calling module's path.
assert_eq!(
resolve_imported_module_path(Some(1), Some("foo"), Some(&["bar".to_string()])),
None,
);
assert_eq!(
resolve_imported_module_path(Some(2), Some("foo"), Some(&["bar".to_string()])),
None
);
}
#[test]
fn any_over_stmt_type_alias() {
let seen = RefCell::new(Vec::new());
let name = Expr::Name(ExprName {
id: "x".to_string(),
range: TextRange::default(),
ctx: ExprContext::Load,
});
let constant_one = Expr::Constant(ExprConstant {
value: Constant::Int(1.into()),
range: TextRange::default(),
});
let constant_two = Expr::Constant(ExprConstant {
value: Constant::Int(2.into()),
range: TextRange::default(),
});
let constant_three = Expr::Constant(ExprConstant {
value: Constant::Int(3.into()),
range: TextRange::default(),
});
let type_var_one = TypeParam::TypeVar(TypeParamTypeVar {
range: TextRange::default(),
bound: Some(Box::new(constant_one.clone())),
name: Identifier::new("x", TextRange::default()),
});
let type_var_two = TypeParam::TypeVar(TypeParamTypeVar {
range: TextRange::default(),
bound: Some(Box::new(constant_two.clone())),
name: Identifier::new("x", TextRange::default()),
});
let type_alias = Stmt::TypeAlias(StmtTypeAlias {
name: Box::new(name.clone()),
type_params: Some(TypeParams {
type_params: vec![type_var_one, type_var_two],
range: TextRange::default(),
}),
value: Box::new(constant_three.clone()),
range: TextRange::default(),
});
assert!(!any_over_stmt(&type_alias, &|expr| {
seen.borrow_mut().push(expr.clone());
false
}));
assert_eq!(
seen.take(),
vec![name, constant_one, constant_two, constant_three]
);
}
#[test]
fn any_over_type_param_type_var() {
let type_var_no_bound = TypeParam::TypeVar(TypeParamTypeVar {
range: TextRange::default(),
bound: None,
name: Identifier::new("x", TextRange::default()),
});
assert!(!any_over_type_param(&type_var_no_bound, &|_expr| true));
let bound = Expr::Constant(ExprConstant {
value: Constant::Int(Int::ONE),
range: TextRange::default(),
});
let type_var_with_bound = TypeParam::TypeVar(TypeParamTypeVar {
range: TextRange::default(),
bound: Some(Box::new(bound.clone())),
name: Identifier::new("x", TextRange::default()),
});
assert!(
any_over_type_param(&type_var_with_bound, &|expr| {
assert_eq!(
*expr, bound,
"the received expression should be the unwrapped bound"
);
true
}),
"if true is returned from `func` it should be respected"
);
}
#[test]
fn any_over_type_param_type_var_tuple() {
let type_var_tuple = TypeParam::TypeVarTuple(TypeParamTypeVarTuple {
range: TextRange::default(),
name: Identifier::new("x", TextRange::default()),
});
assert!(
!any_over_type_param(&type_var_tuple, &|_expr| true),
"type var tuples have no expressions to visit"
);
}
#[test]
fn any_over_type_param_param_spec() {
let type_param_spec = TypeParam::ParamSpec(TypeParamParamSpec {
range: TextRange::default(),
name: Identifier::new("x", TextRange::default()),
});
assert!(
!any_over_type_param(&type_param_spec, &|_expr| true),
"param specs have no expressions to visit"
);
}
}