ruff/crates/ruff_python_ast/src/helpers.rs

1492 lines
49 KiB
Rust

use std::path::Path;
use itertools::Itertools;
use log::error;
use once_cell::sync::Lazy;
use regex::Regex;
use rustc_hash::{FxHashMap, FxHashSet};
use rustpython_parser::ast::{
Arguments, Constant, Excepthandler, ExcepthandlerKind, Expr, ExprKind, Keyword, KeywordData,
Located, Location, MatchCase, Pattern, PatternKind, Stmt, StmtKind,
};
use rustpython_parser::{lexer, Mode, StringKind, Tok};
use smallvec::{smallvec, SmallVec};
use crate::context::Context;
use crate::newlines::StrExt;
use crate::scope::{Binding, BindingKind};
use crate::source_code::{Generator, Indexer, Locator, Stylist};
use crate::types::{CallPath, Range};
use crate::visitor;
use crate::visitor::Visitor;
/// Create an `Expr` with default location from an `ExprKind`.
pub fn create_expr(node: ExprKind) -> Expr {
Expr::new(Location::default(), Location::default(), node)
}
/// Create a `Stmt` with a default location from a `StmtKind`.
pub fn create_stmt(node: StmtKind) -> Stmt {
Stmt::new(Location::default(), Location::default(), node)
}
/// Generate source code from an [`Expr`].
pub fn unparse_expr(expr: &Expr, stylist: &Stylist) -> String {
let mut generator: Generator = stylist.into();
generator.unparse_expr(expr, 0);
generator.generate()
}
/// Generate source code from a [`Stmt`].
pub fn unparse_stmt(stmt: &Stmt, stylist: &Stylist) -> String {
let mut generator: Generator = stylist.into();
generator.unparse_stmt(stmt);
generator.generate()
}
/// Generate source code from an [`Constant`].
pub fn unparse_constant(constant: &Constant, stylist: &Stylist) -> String {
let mut generator: Generator = stylist.into();
generator.unparse_constant(constant);
generator.generate()
}
fn collect_call_path_inner<'a>(expr: &'a Expr, parts: &mut CallPath<'a>) -> bool {
match &expr.node {
ExprKind::Attribute { value, attr, .. } => {
if collect_call_path_inner(value, parts) {
parts.push(attr);
true
} else {
false
}
}
ExprKind::Name { id, .. } => {
parts.push(id);
true
}
_ => false,
}
}
/// Convert an `Expr` to its [`CallPath`] segments (like `["typing", "List"]`).
pub fn collect_call_path(expr: &Expr) -> CallPath {
let mut segments = smallvec![];
collect_call_path_inner(expr, &mut segments);
segments
}
/// Convert an `Expr` to its call path (like `List`, or `typing.List`).
pub fn compose_call_path(expr: &Expr) -> Option<String> {
let call_path = collect_call_path(expr);
if call_path.is_empty() {
None
} else {
Some(format_call_path(&call_path))
}
}
/// Format a call path for display.
pub fn format_call_path(call_path: &[&str]) -> String {
if call_path
.first()
.expect("Unable to format empty call path")
.is_empty()
{
call_path[1..].join(".")
} else {
call_path.join(".")
}
}
/// Return `true` if the `Expr` contains a reference to `${module}.${target}`.
pub fn contains_call_path(ctx: &Context, expr: &Expr, target: &[&str]) -> bool {
any_over_expr(expr, &|expr| {
ctx.resolve_call_path(expr)
.map_or(false, |call_path| call_path.as_slice() == target)
})
}
/// Return `true` if the `Expr` contains an expression that appears to include a
/// side-effect (like a function call).
pub fn contains_effect(ctx: &Context, expr: &Expr) -> bool {
any_over_expr(expr, &|expr| {
// Accept empty initializers.
if let ExprKind::Call {
func,
args,
keywords,
} = &expr.node
{
if args.is_empty() && keywords.is_empty() {
if let ExprKind::Name { id, .. } = &func.node {
let is_empty_initializer = (id == "set"
|| id == "list"
|| id == "tuple"
|| id == "dict"
|| id == "frozenset")
&& ctx.is_builtin(id);
return !is_empty_initializer;
}
}
}
// Avoid false positive for overloaded operators.
if let ExprKind::BinOp { left, right, .. } = &expr.node {
if !matches!(
left.node,
ExprKind::Constant { .. }
| ExprKind::JoinedStr { .. }
| ExprKind::List { .. }
| ExprKind::Tuple { .. }
| ExprKind::Set { .. }
| ExprKind::Dict { .. }
| ExprKind::ListComp { .. }
| ExprKind::SetComp { .. }
| ExprKind::DictComp { .. }
) {
return true;
}
if !matches!(
right.node,
ExprKind::Constant { .. }
| ExprKind::JoinedStr { .. }
| ExprKind::List { .. }
| ExprKind::Tuple { .. }
| ExprKind::Set { .. }
| ExprKind::Dict { .. }
| ExprKind::ListComp { .. }
| ExprKind::SetComp { .. }
| ExprKind::DictComp { .. }
) {
return true;
}
return false;
}
// Otherwise, avoid all complex expressions.
matches!(
expr.node,
ExprKind::Await { .. }
| ExprKind::Call { .. }
| ExprKind::DictComp { .. }
| ExprKind::GeneratorExp { .. }
| ExprKind::ListComp { .. }
| ExprKind::SetComp { .. }
| ExprKind::Subscript { .. }
| ExprKind::Yield { .. }
| ExprKind::YieldFrom { .. }
)
})
}
/// Call `func` over every `Expr` in `expr`, returning `true` if any expression
/// returns `true`..
pub fn any_over_expr<F>(expr: &Expr, func: &F) -> bool
where
F: Fn(&Expr) -> bool,
{
if func(expr) {
return true;
}
match &expr.node {
ExprKind::BoolOp { values, .. } | ExprKind::JoinedStr { values } => {
values.iter().any(|expr| any_over_expr(expr, func))
}
ExprKind::NamedExpr { target, value } => {
any_over_expr(target, func) || any_over_expr(value, func)
}
ExprKind::BinOp { left, right, .. } => {
any_over_expr(left, func) || any_over_expr(right, func)
}
ExprKind::UnaryOp { operand, .. } => any_over_expr(operand, func),
ExprKind::Lambda { body, .. } => any_over_expr(body, func),
ExprKind::IfExp { test, body, orelse } => {
any_over_expr(test, func) || any_over_expr(body, func) || any_over_expr(orelse, func)
}
ExprKind::Dict { keys, values } => values
.iter()
.chain(keys.iter().flatten())
.any(|expr| any_over_expr(expr, func)),
ExprKind::Set { elts } | ExprKind::List { elts, .. } | ExprKind::Tuple { elts, .. } => {
elts.iter().any(|expr| any_over_expr(expr, func))
}
ExprKind::ListComp { elt, generators }
| ExprKind::SetComp { elt, generators }
| ExprKind::GeneratorExp { elt, generators } => {
any_over_expr(elt, func)
|| generators.iter().any(|generator| {
any_over_expr(&generator.target, func)
|| any_over_expr(&generator.iter, func)
|| generator.ifs.iter().any(|expr| any_over_expr(expr, func))
})
}
ExprKind::DictComp {
key,
value,
generators,
} => {
any_over_expr(key, func)
|| any_over_expr(value, func)
|| generators.iter().any(|generator| {
any_over_expr(&generator.target, func)
|| any_over_expr(&generator.iter, func)
|| generator.ifs.iter().any(|expr| any_over_expr(expr, func))
})
}
ExprKind::Await { value }
| ExprKind::YieldFrom { value }
| ExprKind::Attribute { value, .. }
| ExprKind::Starred { value, .. } => any_over_expr(value, func),
ExprKind::Yield { value } => value
.as_ref()
.map_or(false, |value| any_over_expr(value, func)),
ExprKind::Compare {
left, comparators, ..
} => any_over_expr(left, func) || comparators.iter().any(|expr| any_over_expr(expr, func)),
ExprKind::Call {
func: call_func,
args,
keywords,
} => {
any_over_expr(call_func, func)
|| args.iter().any(|expr| any_over_expr(expr, func))
|| keywords
.iter()
.any(|keyword| any_over_expr(&keyword.node.value, func))
}
ExprKind::FormattedValue {
value, format_spec, ..
} => {
any_over_expr(value, func)
|| format_spec
.as_ref()
.map_or(false, |value| any_over_expr(value, func))
}
ExprKind::Subscript { value, slice, .. } => {
any_over_expr(value, func) || any_over_expr(slice, func)
}
ExprKind::Slice { lower, upper, step } => {
lower
.as_ref()
.map_or(false, |value| any_over_expr(value, func))
|| upper
.as_ref()
.map_or(false, |value| any_over_expr(value, func))
|| step
.as_ref()
.map_or(false, |value| any_over_expr(value, func))
}
ExprKind::Name { .. } | ExprKind::Constant { .. } => false,
}
}
pub fn any_over_pattern<F>(pattern: &Pattern, func: &F) -> bool
where
F: Fn(&Expr) -> bool,
{
match &pattern.node {
PatternKind::MatchValue { value } => any_over_expr(value, func),
PatternKind::MatchSingleton { .. } => false,
PatternKind::MatchSequence { patterns } => patterns
.iter()
.any(|pattern| any_over_pattern(pattern, func)),
PatternKind::MatchMapping { keys, patterns, .. } => {
keys.iter().any(|key| any_over_expr(key, func))
|| patterns
.iter()
.any(|pattern| any_over_pattern(pattern, func))
}
PatternKind::MatchClass {
cls,
patterns,
kwd_patterns,
..
} => {
any_over_expr(cls, func)
|| patterns
.iter()
.any(|pattern| any_over_pattern(pattern, func))
|| kwd_patterns
.iter()
.any(|pattern| any_over_pattern(pattern, func))
}
PatternKind::MatchStar { .. } => false,
PatternKind::MatchAs { pattern, .. } => pattern
.as_ref()
.map_or(false, |pattern| any_over_pattern(pattern, func)),
PatternKind::MatchOr { patterns } => patterns
.iter()
.any(|pattern| any_over_pattern(pattern, func)),
}
}
pub fn any_over_stmt<F>(stmt: &Stmt, func: &F) -> bool
where
F: Fn(&Expr) -> bool,
{
match &stmt.node {
StmtKind::FunctionDef {
args,
body,
decorator_list,
returns,
..
}
| StmtKind::AsyncFunctionDef {
args,
body,
decorator_list,
returns,
..
} => {
args.defaults.iter().any(|expr| any_over_expr(expr, func))
|| args
.kw_defaults
.iter()
.any(|expr| any_over_expr(expr, func))
|| args.args.iter().any(|arg| {
arg.node
.annotation
.as_ref()
.map_or(false, |expr| any_over_expr(expr, func))
})
|| args.kwonlyargs.iter().any(|arg| {
arg.node
.annotation
.as_ref()
.map_or(false, |expr| any_over_expr(expr, func))
})
|| args.posonlyargs.iter().any(|arg| {
arg.node
.annotation
.as_ref()
.map_or(false, |expr| any_over_expr(expr, func))
})
|| args.vararg.as_ref().map_or(false, |arg| {
arg.node
.annotation
.as_ref()
.map_or(false, |expr| any_over_expr(expr, func))
})
|| args.kwarg.as_ref().map_or(false, |arg| {
arg.node
.annotation
.as_ref()
.map_or(false, |expr| any_over_expr(expr, func))
})
|| body.iter().any(|stmt| any_over_stmt(stmt, func))
|| decorator_list.iter().any(|expr| any_over_expr(expr, func))
|| returns
.as_ref()
.map_or(false, |value| any_over_expr(value, func))
}
StmtKind::ClassDef {
bases,
keywords,
body,
decorator_list,
..
} => {
bases.iter().any(|expr| any_over_expr(expr, func))
|| keywords
.iter()
.any(|keyword| any_over_expr(&keyword.node.value, func))
|| body.iter().any(|stmt| any_over_stmt(stmt, func))
|| decorator_list.iter().any(|expr| any_over_expr(expr, func))
}
StmtKind::Return { value } => value
.as_ref()
.map_or(false, |value| any_over_expr(value, func)),
StmtKind::Delete { targets } => targets.iter().any(|expr| any_over_expr(expr, func)),
StmtKind::Assign { targets, value, .. } => {
targets.iter().any(|expr| any_over_expr(expr, func)) || any_over_expr(value, func)
}
StmtKind::AugAssign { target, value, .. } => {
any_over_expr(target, func) || any_over_expr(value, func)
}
StmtKind::AnnAssign {
target,
annotation,
value,
..
} => {
any_over_expr(target, func)
|| any_over_expr(annotation, func)
|| value
.as_ref()
.map_or(false, |value| any_over_expr(value, func))
}
StmtKind::For {
target,
iter,
body,
orelse,
..
}
| StmtKind::AsyncFor {
target,
iter,
body,
orelse,
..
} => {
any_over_expr(target, func)
|| any_over_expr(iter, func)
|| any_over_body(body, func)
|| any_over_body(orelse, func)
}
StmtKind::While { test, body, orelse } => {
any_over_expr(test, func) || any_over_body(body, func) || any_over_body(orelse, func)
}
StmtKind::If { test, body, orelse } => {
any_over_expr(test, func) || any_over_body(body, func) || any_over_body(orelse, func)
}
StmtKind::With { items, body, .. } | StmtKind::AsyncWith { items, body, .. } => {
items.iter().any(|withitem| {
any_over_expr(&withitem.context_expr, func)
|| withitem
.optional_vars
.as_ref()
.map_or(false, |expr| any_over_expr(expr, func))
}) || any_over_body(body, func)
}
StmtKind::Raise { exc, cause } => {
exc.as_ref()
.map_or(false, |value| any_over_expr(value, func))
|| cause
.as_ref()
.map_or(false, |value| any_over_expr(value, func))
}
StmtKind::Try {
body,
handlers,
orelse,
finalbody,
}
| StmtKind::TryStar {
body,
handlers,
orelse,
finalbody,
} => {
any_over_body(body, func)
|| handlers.iter().any(|handler| {
let ExcepthandlerKind::ExceptHandler { type_, body, .. } = &handler.node;
type_
.as_ref()
.map_or(false, |expr| any_over_expr(expr, func))
|| any_over_body(body, func)
})
|| any_over_body(orelse, func)
|| any_over_body(finalbody, func)
}
StmtKind::Assert { test, msg } => {
any_over_expr(test, func)
|| msg
.as_ref()
.map_or(false, |value| any_over_expr(value, func))
}
StmtKind::Match { subject, cases } => {
any_over_expr(subject, func)
|| cases.iter().any(|case| {
let MatchCase {
pattern,
guard,
body,
} = case;
any_over_pattern(pattern, func)
|| guard
.as_ref()
.map_or(false, |expr| any_over_expr(expr, func))
|| any_over_body(body, func)
})
}
StmtKind::Import { .. } => false,
StmtKind::ImportFrom { .. } => false,
StmtKind::Global { .. } => false,
StmtKind::Nonlocal { .. } => false,
StmtKind::Expr { value } => any_over_expr(value, func),
StmtKind::Pass => false,
StmtKind::Break => false,
StmtKind::Continue => false,
}
}
pub fn any_over_body<F>(body: &[Stmt], func: &F) -> bool
where
F: Fn(&Expr) -> bool,
{
body.iter().any(|stmt| any_over_stmt(stmt, func))
}
static DUNDER_REGEX: Lazy<Regex> = Lazy::new(|| Regex::new(r"__[^\s]+__").unwrap());
/// Return `true` if the [`Stmt`] is an assignment to a dunder (like `__all__`).
pub fn is_assignment_to_a_dunder(stmt: &Stmt) -> bool {
// Check whether it's an assignment to a dunder, with or without a type
// annotation. This is what pycodestyle (as of 2.9.1) does.
match &stmt.node {
StmtKind::Assign { targets, .. } => {
if targets.len() != 1 {
return false;
}
match &targets[0].node {
ExprKind::Name { id, .. } => DUNDER_REGEX.is_match(id),
_ => false,
}
}
StmtKind::AnnAssign { target, .. } => match &target.node {
ExprKind::Name { id, .. } => DUNDER_REGEX.is_match(id),
_ => false,
},
_ => false,
}
}
/// Return `true` if the [`Expr`] is a singleton (`None`, `True`, `False`, or
/// `...`).
pub const fn is_singleton(expr: &Expr) -> bool {
matches!(
expr.node,
ExprKind::Constant {
value: Constant::None | Constant::Bool(_) | Constant::Ellipsis,
..
}
)
}
/// Return `true` if the [`Expr`] is a constant or tuple of constants.
pub fn is_constant(expr: &Expr) -> bool {
match &expr.node {
ExprKind::Constant { .. } => true,
ExprKind::Tuple { elts, .. } => elts.iter().all(is_constant),
_ => false,
}
}
/// Return `true` if the [`Expr`] is a non-singleton constant.
pub fn is_constant_non_singleton(expr: &Expr) -> bool {
is_constant(expr) && !is_singleton(expr)
}
/// Return the [`Keyword`] with the given name, if it's present in the list of
/// [`Keyword`] arguments.
pub fn find_keyword<'a>(keywords: &'a [Keyword], keyword_name: &str) -> Option<&'a Keyword> {
keywords.iter().find(|keyword| {
let KeywordData { arg, .. } = &keyword.node;
arg.as_ref().map_or(false, |arg| arg == keyword_name)
})
}
/// Return `true` if an [`Expr`] is `None`.
pub const fn is_const_none(expr: &Expr) -> bool {
matches!(
&expr.node,
ExprKind::Constant {
value: Constant::None,
kind: None
},
)
}
/// Return `true` if an [`Expr`] is `True`.
pub const fn is_const_true(expr: &Expr) -> bool {
matches!(
&expr.node,
ExprKind::Constant {
value: Constant::Bool(true),
kind: None
},
)
}
/// Return `true` if a keyword argument is present with a non-`None` value.
pub fn has_non_none_keyword(keywords: &[Keyword], keyword: &str) -> bool {
find_keyword(keywords, keyword).map_or(false, |keyword| {
let KeywordData { value, .. } = &keyword.node;
!is_const_none(value)
})
}
/// Extract the names of all handled exceptions.
pub fn extract_handled_exceptions(handlers: &[Excepthandler]) -> Vec<&Expr> {
let mut handled_exceptions = Vec::new();
for handler in handlers {
match &handler.node {
ExcepthandlerKind::ExceptHandler { type_, .. } => {
if let Some(type_) = type_ {
if let ExprKind::Tuple { elts, .. } = &type_.node {
for type_ in elts {
handled_exceptions.push(type_);
}
} else {
handled_exceptions.push(type_);
}
}
}
}
}
handled_exceptions
}
/// Return the set of all bound argument names.
pub fn collect_arg_names<'a>(arguments: &'a Arguments) -> FxHashSet<&'a str> {
let mut arg_names: FxHashSet<&'a str> = FxHashSet::default();
for arg in &arguments.posonlyargs {
arg_names.insert(arg.node.arg.as_str());
}
for arg in &arguments.args {
arg_names.insert(arg.node.arg.as_str());
}
if let Some(arg) = &arguments.vararg {
arg_names.insert(arg.node.arg.as_str());
}
for arg in &arguments.kwonlyargs {
arg_names.insert(arg.node.arg.as_str());
}
if let Some(arg) = &arguments.kwarg {
arg_names.insert(arg.node.arg.as_str());
}
arg_names
}
/// Given an [`Expr`] that can be callable or not (like a decorator, which could
/// be used with or without explicit call syntax), return the underlying
/// callable.
pub fn map_callable(decorator: &Expr) -> &Expr {
if let ExprKind::Call { func, .. } = &decorator.node {
func
} else {
decorator
}
}
/// Returns `true` if a statement or expression includes at least one comment.
pub fn has_comments<T>(located: &Located<T>, locator: &Locator) -> bool {
let start = if match_leading_content(located, locator) {
located.location
} else {
Location::new(located.location.row(), 0)
};
let end = if match_trailing_content(located, locator) {
located.end_location.unwrap()
} else {
Location::new(located.end_location.unwrap().row() + 1, 0)
};
has_comments_in(Range::new(start, end), locator)
}
/// Returns `true` if a [`Range`] includes at least one comment.
pub fn has_comments_in(range: Range, locator: &Locator) -> bool {
for tok in lexer::lex_located(locator.slice(range), Mode::Module, range.location) {
match tok {
Ok((_, tok, _)) => {
if matches!(tok, Tok::Comment(..)) {
return true;
}
}
Err(_) => {
return false;
}
}
}
false
}
/// Return `true` if the body uses `locals()`, `globals()`, `vars()`, `eval()`.
pub fn uses_magic_variable_access(ctx: &Context, body: &[Stmt]) -> bool {
any_over_body(body, &|expr| {
if let ExprKind::Call { func, .. } = &expr.node {
ctx.resolve_call_path(func).map_or(false, |call_path| {
call_path.as_slice() == ["", "locals"]
|| call_path.as_slice() == ["", "globals"]
|| call_path.as_slice() == ["", "vars"]
|| call_path.as_slice() == ["", "eval"]
|| call_path.as_slice() == ["", "exec"]
})
} else {
false
}
})
}
/// Format the module name for a relative import.
pub fn format_import_from(level: Option<&usize>, module: Option<&str>) -> String {
let mut module_name = String::with_capacity(16);
if let Some(level) = level {
for _ in 0..*level {
module_name.push('.');
}
}
if let Some(module) = module {
module_name.push_str(module);
}
module_name
}
/// Format the member reference name for a relative import.
pub fn format_import_from_member(
level: Option<&usize>,
module: Option<&str>,
member: &str,
) -> String {
let mut full_name = String::with_capacity(
level.map_or(0, |level| *level)
+ module.as_ref().map_or(0, |module| module.len())
+ 1
+ member.len(),
);
if let Some(level) = level {
for _ in 0..*level {
full_name.push('.');
}
}
if let Some(module) = module {
full_name.push_str(module);
full_name.push('.');
}
full_name.push_str(member);
full_name
}
/// Split a target string (like `typing.List`) into (`typing`, `List`).
pub fn to_call_path(target: &str) -> CallPath {
if target.contains('.') {
target.split('.').collect()
} else {
smallvec!["", target]
}
}
/// Create a module path from a (package, path) pair.
///
/// For example, if the package is `foo/bar` and the path is `foo/bar/baz.py`,
/// the call path is `["baz"]`.
pub fn to_module_path(package: &Path, path: &Path) -> Option<Vec<String>> {
path.strip_prefix(package.parent()?)
.ok()?
.iter()
.map(Path::new)
.map(Path::file_stem)
.map(|path| path.and_then(|path| path.to_os_string().into_string().ok()))
.collect::<Option<Vec<String>>>()
}
/// Create a call path from a relative import.
pub fn from_relative_import<'a>(module: &'a [String], name: &'a str) -> CallPath<'a> {
let mut call_path: CallPath = SmallVec::with_capacity(module.len() + 1);
// Start with the module path.
call_path.extend(module.iter().map(String::as_str));
// Remove segments based on the number of dots.
for _ in 0..name.chars().take_while(|c| *c == '.').count() {
call_path.pop();
}
// Add the remaining segments.
call_path.extend(name.trim_start_matches('.').split('.'));
call_path
}
/// A [`Visitor`] that collects all `return` statements in a function or method.
#[derive(Default)]
pub struct ReturnStatementVisitor<'a> {
pub returns: Vec<Option<&'a Expr>>,
}
impl<'a, 'b> Visitor<'b> for ReturnStatementVisitor<'a>
where
'b: 'a,
{
fn visit_stmt(&mut self, stmt: &'b Stmt) {
match &stmt.node {
StmtKind::FunctionDef { .. } | StmtKind::AsyncFunctionDef { .. } => {
// Don't recurse.
}
StmtKind::Return { value } => self.returns.push(value.as_deref()),
_ => visitor::walk_stmt(self, stmt),
}
}
}
/// A [`Visitor`] that collects all `raise` statements in a function or method.
#[derive(Default)]
pub struct RaiseStatementVisitor<'a> {
pub raises: Vec<(Range, Option<&'a Expr>, Option<&'a Expr>)>,
}
impl<'a, 'b> Visitor<'b> for RaiseStatementVisitor<'b>
where
'b: 'a,
{
fn visit_stmt(&mut self, stmt: &'b Stmt) {
match &stmt.node {
StmtKind::Raise { exc, cause } => {
self.raises
.push((Range::from(stmt), exc.as_deref(), cause.as_deref()));
}
StmtKind::ClassDef { .. }
| StmtKind::FunctionDef { .. }
| StmtKind::AsyncFunctionDef { .. }
| StmtKind::Try { .. }
| StmtKind::TryStar { .. } => {}
StmtKind::If { body, orelse, .. } => {
visitor::walk_body(self, body);
visitor::walk_body(self, orelse);
}
StmtKind::While { body, .. }
| StmtKind::With { body, .. }
| StmtKind::AsyncWith { body, .. }
| StmtKind::For { body, .. }
| StmtKind::AsyncFor { body, .. } => {
visitor::walk_body(self, body);
}
StmtKind::Match { cases, .. } => {
for case in cases {
visitor::walk_body(self, &case.body);
}
}
_ => {}
}
}
}
/// Convert a location within a file (relative to `base`) to an absolute
/// position.
pub fn to_absolute(relative: Location, base: Location) -> Location {
if relative.row() == 1 {
Location::new(
relative.row() + base.row() - 1,
relative.column() + base.column(),
)
} else {
Location::new(relative.row() + base.row() - 1, relative.column())
}
}
pub fn to_relative(absolute: Location, base: Location) -> Location {
if absolute.row() == base.row() {
Location::new(
absolute.row() - base.row() + 1,
absolute.column() - base.column(),
)
} else {
Location::new(absolute.row() - base.row() + 1, absolute.column())
}
}
/// Return `true` if a [`Located`] has leading content.
pub fn match_leading_content<T>(located: &Located<T>, locator: &Locator) -> bool {
let range = Range::new(Location::new(located.location.row(), 0), located.location);
let prefix = locator.slice(range);
prefix.chars().any(|char| !char.is_whitespace())
}
/// Return `true` if a [`Located`] has trailing content.
pub fn match_trailing_content<T>(located: &Located<T>, locator: &Locator) -> bool {
let range = Range::new(
located.end_location.unwrap(),
Location::new(located.end_location.unwrap().row() + 1, 0),
);
let suffix = locator.slice(range);
for char in suffix.chars() {
if char == '#' {
return false;
}
if !char.is_whitespace() {
return true;
}
}
false
}
/// If a [`Located`] has a trailing comment, return the index of the hash.
pub fn match_trailing_comment<T>(located: &Located<T>, locator: &Locator) -> Option<usize> {
let range = Range::new(
located.end_location.unwrap(),
Location::new(located.end_location.unwrap().row() + 1, 0),
);
let suffix = locator.slice(range);
for (i, char) in suffix.chars().enumerate() {
if char == '#' {
return Some(i);
}
if !char.is_whitespace() {
return None;
}
}
None
}
/// Return the number of trailing empty lines following a statement.
pub fn count_trailing_lines(stmt: &Stmt, locator: &Locator) -> usize {
let suffix = locator.skip(Location::new(stmt.end_location.unwrap().row() + 1, 0));
suffix
.lines()
.take_while(|line| line.trim().is_empty())
.count()
}
/// Return the range of the first parenthesis pair after a given [`Location`].
pub fn match_parens(start: Location, locator: &Locator) -> Option<Range> {
let contents = locator.skip(start);
let mut fix_start = None;
let mut fix_end = None;
let mut count: usize = 0;
for (start, tok, end) in lexer::lex_located(contents, Mode::Module, start).flatten() {
if matches!(tok, Tok::Lpar) {
if count == 0 {
fix_start = Some(start);
}
count += 1;
}
if matches!(tok, Tok::Rpar) {
count -= 1;
if count == 0 {
fix_end = Some(end);
break;
}
}
}
match (fix_start, fix_end) {
(Some(start), Some(end)) => Some(Range::new(start, end)),
_ => None,
}
}
/// Return the appropriate visual `Range` for any message that spans a `Stmt`.
/// Specifically, this method returns the range of a function or class name,
/// rather than that of the entire function or class body.
pub fn identifier_range(stmt: &Stmt, locator: &Locator) -> Range {
if matches!(
stmt.node,
StmtKind::ClassDef { .. }
| StmtKind::FunctionDef { .. }
| StmtKind::AsyncFunctionDef { .. }
) {
let contents = locator.slice(stmt);
for (start, tok, end) in lexer::lex_located(contents, Mode::Module, stmt.location).flatten()
{
if matches!(tok, Tok::Name { .. }) {
return Range::new(start, end);
}
}
error!("Failed to find identifier for {:?}", stmt);
}
Range::from(stmt)
}
/// Like `identifier_range`, but accepts a `Binding`.
pub fn binding_range(binding: &Binding, locator: &Locator) -> Range {
if matches!(
binding.kind,
BindingKind::ClassDefinition | BindingKind::FunctionDefinition
) {
binding
.source
.as_ref()
.map_or(binding.range, |source| identifier_range(source, locator))
} else {
binding.range
}
}
/// Return the ranges of [`Tok::Name`] tokens within a specified node.
pub fn find_names<'a, T>(
located: &'a Located<T>,
locator: &'a Locator,
) -> impl Iterator<Item = Range> + 'a {
let contents = locator.slice(located);
lexer::lex_located(contents, Mode::Module, located.location)
.flatten()
.filter(|(_, tok, _)| matches!(tok, Tok::Name { .. }))
.map(|(start, _, end)| Range {
location: start,
end_location: end,
})
}
/// Return the `Range` of `name` in `Excepthandler`.
pub fn excepthandler_name_range(handler: &Excepthandler, locator: &Locator) -> Option<Range> {
let ExcepthandlerKind::ExceptHandler {
name, type_, body, ..
} = &handler.node;
match (name, type_) {
(Some(_), Some(type_)) => {
let type_end_location = type_.end_location.unwrap();
let contents = locator.slice(Range::new(type_end_location, body[0].location));
let range = lexer::lex_located(contents, Mode::Module, type_end_location)
.flatten()
.tuple_windows()
.find(|(tok, next_tok)| {
matches!(tok.1, Tok::As) && matches!(next_tok.1, Tok::Name { .. })
})
.map(|((..), (location, _, end_location))| Range::new(location, end_location));
range
}
_ => None,
}
}
/// Return the `Range` of `except` in `Excepthandler`.
pub fn except_range(handler: &Excepthandler, locator: &Locator) -> Range {
let ExcepthandlerKind::ExceptHandler { body, type_, .. } = &handler.node;
let end = if let Some(type_) = type_ {
type_.location
} else {
body.first()
.expect("Expected body to be non-empty")
.location
};
let contents = locator.slice(Range {
location: handler.location,
end_location: end,
});
let range = lexer::lex_located(contents, Mode::Module, handler.location)
.flatten()
.find(|(_, kind, _)| matches!(kind, Tok::Except { .. }))
.map(|(location, _, end_location)| Range {
location,
end_location,
})
.expect("Failed to find `except` range");
range
}
/// Find f-strings that don't contain any formatted values in a `JoinedStr`.
pub fn find_useless_f_strings(expr: &Expr, locator: &Locator) -> Vec<(Range, Range)> {
let contents = locator.slice(expr);
lexer::lex_located(contents, Mode::Module, expr.location)
.flatten()
.filter_map(|(location, tok, end_location)| match tok {
Tok::String {
kind: StringKind::FString | StringKind::RawFString,
..
} => {
let first_char = locator.slice(Range {
location,
end_location: Location::new(location.row(), location.column() + 1),
});
// f"..." => f_position = 0
// fr"..." => f_position = 0
// rf"..." => f_position = 1
let f_position = usize::from(!(first_char == "f" || first_char == "F"));
Some((
Range {
location: Location::new(location.row(), location.column() + f_position),
end_location: Location::new(
location.row(),
location.column() + f_position + 1,
),
},
Range {
location,
end_location,
},
))
}
_ => None,
})
.collect()
}
/// Return the `Range` of `else` in `For`, `AsyncFor`, and `While` statements.
pub fn else_range(stmt: &Stmt, locator: &Locator) -> Option<Range> {
match &stmt.node {
StmtKind::For { body, orelse, .. }
| StmtKind::AsyncFor { body, orelse, .. }
| StmtKind::While { body, orelse, .. }
if !orelse.is_empty() =>
{
let body_end = body
.last()
.expect("Expected body to be non-empty")
.end_location
.unwrap();
let contents = locator.slice(Range {
location: body_end,
end_location: orelse
.first()
.expect("Expected orelse to be non-empty")
.location,
});
let range = lexer::lex_located(contents, Mode::Module, body_end)
.flatten()
.find(|(_, kind, _)| matches!(kind, Tok::Else))
.map(|(location, _, end_location)| Range {
location,
end_location,
});
range
}
_ => None,
}
}
/// Return the `Range` of the first `Tok::Colon` token in a `Range`.
pub fn first_colon_range(range: Range, locator: &Locator) -> Option<Range> {
let contents = locator.slice(range);
let range = lexer::lex_located(contents, Mode::Module, range.location)
.flatten()
.find(|(_, kind, _)| matches!(kind, Tok::Colon))
.map(|(location, _, end_location)| Range {
location,
end_location,
});
range
}
/// Given a statement, find its "logical end".
///
/// For example: the statement could be following by a trailing semicolon, by an end-of-line
/// comment, or by any number of continuation lines (and then by a comment, and so on).
pub fn end_of_statement(stmt: &Stmt, locator: &Locator) -> Location {
let contents = locator.skip(stmt.end_location.unwrap());
// End-of-file, so just return the end of the statement.
if contents.is_empty() {
return stmt.end_location.unwrap();
}
// Otherwise, find the end of the last line that's "part of" the statement.
for (lineno, line) in contents.universal_newlines().enumerate() {
if line.ends_with('\\') {
continue;
}
return to_absolute(
Location::new(lineno + 1, line.chars().count()),
stmt.end_location.unwrap(),
);
}
unreachable!("Expected to find end-of-statement")
}
/// Return the `Range` of the first `Elif` or `Else` token in an `If` statement.
pub fn elif_else_range(stmt: &Stmt, locator: &Locator) -> Option<Range> {
let StmtKind::If { body, orelse, .. } = &stmt.node else {
return None;
};
let start = body
.last()
.expect("Expected body to be non-empty")
.end_location
.unwrap();
let end = match &orelse[..] {
[Stmt {
node: StmtKind::If { test, .. },
..
}] => test.location,
[stmt, ..] => stmt.location,
_ => return None,
};
let contents = locator.slice(Range::new(start, end));
let range = lexer::lex_located(contents, Mode::Module, start)
.flatten()
.find(|(_, kind, _)| matches!(kind, Tok::Elif | Tok::Else))
.map(|(location, _, end_location)| Range {
location,
end_location,
});
range
}
/// Return `true` if a `Stmt` appears to be part of a multi-statement line, with
/// other statements preceding it.
pub fn preceded_by_continuation(stmt: &Stmt, indexer: &Indexer) -> bool {
stmt.location.row() > 1
&& indexer
.continuation_lines()
.contains(&(stmt.location.row() - 1))
}
/// Return `true` if a `Stmt` appears to be part of a multi-statement line, with
/// other statements preceding it.
pub fn preceded_by_multi_statement_line(stmt: &Stmt, locator: &Locator, indexer: &Indexer) -> bool {
match_leading_content(stmt, locator) || preceded_by_continuation(stmt, indexer)
}
/// Return `true` if a `Stmt` appears to be part of a multi-statement line, with
/// other statements following it.
pub fn followed_by_multi_statement_line(stmt: &Stmt, locator: &Locator) -> bool {
match_trailing_content(stmt, locator)
}
/// Return `true` if a `Stmt` is a docstring.
pub const fn is_docstring_stmt(stmt: &Stmt) -> bool {
if let StmtKind::Expr { value } = &stmt.node {
matches!(
value.node,
ExprKind::Constant {
value: Constant::Str { .. },
..
}
)
} else {
false
}
}
#[derive(Default)]
/// A simple representation of a call's positional and keyword arguments.
pub struct SimpleCallArgs<'a> {
pub args: Vec<&'a Expr>,
pub kwargs: FxHashMap<&'a str, &'a Expr>,
}
impl<'a> SimpleCallArgs<'a> {
pub fn new(
args: impl IntoIterator<Item = &'a Expr>,
keywords: impl IntoIterator<Item = &'a Keyword>,
) -> Self {
let args = args
.into_iter()
.take_while(|arg| !matches!(arg.node, ExprKind::Starred { .. }))
.collect();
let kwargs = keywords
.into_iter()
.filter_map(|keyword| {
let node = &keyword.node;
node.arg.as_ref().map(|arg| (arg.as_ref(), &node.value))
})
.collect();
SimpleCallArgs { args, kwargs }
}
/// Get the argument with the given name.
/// If the argument is not found by name, return
/// `None`.
pub fn keyword_argument(&self, name: &str) -> Option<&'a Expr> {
self.kwargs.get(name).copied()
}
/// Get the argument with the given name or position.
/// If the argument is not found with either name or position, return
/// `None`.
pub fn argument(&self, name: &str, position: usize) -> Option<&'a Expr> {
self.keyword_argument(name)
.or_else(|| self.args.get(position).copied())
}
/// Return the number of positional and keyword arguments.
pub fn len(&self) -> usize {
self.args.len() + self.kwargs.len()
}
/// Return `true` if there are no positional or keyword arguments.
pub fn is_empty(&self) -> bool {
self.len() == 0
}
}
/// Return `true` if the given `Expr` is a potential logging call. Matches
/// `logging.error`, `logger.error`, `self.logger.error`, etc., but not
/// arbitrary `foo.error` calls.
pub fn is_logger_candidate(func: &Expr) -> bool {
if let ExprKind::Attribute { value, .. } = &func.node {
let call_path = collect_call_path(value);
if let Some(tail) = call_path.last() {
if tail.starts_with("log") || tail.ends_with("logger") || tail.ends_with("logging") {
return true;
}
}
}
false
}
#[cfg(test)]
mod tests {
use anyhow::Result;
use rustpython_parser as parser;
use rustpython_parser::ast::Location;
use crate::helpers::{
elif_else_range, else_range, first_colon_range, identifier_range, match_trailing_content,
};
use crate::source_code::Locator;
use crate::types::Range;
#[test]
fn trailing_content() -> Result<()> {
let contents = "x = 1";
let program = parser::parse_program(contents, "<filename>")?;
let stmt = program.first().unwrap();
let locator = Locator::new(contents);
assert!(!match_trailing_content(stmt, &locator));
let contents = "x = 1; y = 2";
let program = parser::parse_program(contents, "<filename>")?;
let stmt = program.first().unwrap();
let locator = Locator::new(contents);
assert!(match_trailing_content(stmt, &locator));
let contents = "x = 1 ";
let program = parser::parse_program(contents, "<filename>")?;
let stmt = program.first().unwrap();
let locator = Locator::new(contents);
assert!(!match_trailing_content(stmt, &locator));
let contents = "x = 1 # Comment";
let program = parser::parse_program(contents, "<filename>")?;
let stmt = program.first().unwrap();
let locator = Locator::new(contents);
assert!(!match_trailing_content(stmt, &locator));
let contents = r#"
x = 1
y = 2
"#
.trim();
let program = parser::parse_program(contents, "<filename>")?;
let stmt = program.first().unwrap();
let locator = Locator::new(contents);
assert!(!match_trailing_content(stmt, &locator));
Ok(())
}
#[test]
fn extract_identifier_range() -> Result<()> {
let contents = "def f(): pass".trim();
let program = parser::parse_program(contents, "<filename>")?;
let stmt = program.first().unwrap();
let locator = Locator::new(contents);
assert_eq!(
identifier_range(stmt, &locator),
Range::new(Location::new(1, 4), Location::new(1, 5),)
);
let contents = r#"
def \
f():
pass
"#
.trim();
let program = parser::parse_program(contents, "<filename>")?;
let stmt = program.first().unwrap();
let locator = Locator::new(contents);
assert_eq!(
identifier_range(stmt, &locator),
Range::new(Location::new(2, 2), Location::new(2, 3),)
);
let contents = "class Class(): pass".trim();
let program = parser::parse_program(contents, "<filename>")?;
let stmt = program.first().unwrap();
let locator = Locator::new(contents);
assert_eq!(
identifier_range(stmt, &locator),
Range::new(Location::new(1, 6), Location::new(1, 11),)
);
let contents = "class Class: pass".trim();
let program = parser::parse_program(contents, "<filename>")?;
let stmt = program.first().unwrap();
let locator = Locator::new(contents);
assert_eq!(
identifier_range(stmt, &locator),
Range::new(Location::new(1, 6), Location::new(1, 11),)
);
let contents = r#"
@decorator()
class Class():
pass
"#
.trim();
let program = parser::parse_program(contents, "<filename>")?;
let stmt = program.first().unwrap();
let locator = Locator::new(contents);
assert_eq!(
identifier_range(stmt, &locator),
Range::new(Location::new(2, 6), Location::new(2, 11),)
);
let contents = r#"x = y + 1"#.trim();
let program = parser::parse_program(contents, "<filename>")?;
let stmt = program.first().unwrap();
let locator = Locator::new(contents);
assert_eq!(
identifier_range(stmt, &locator),
Range::new(Location::new(1, 0), Location::new(1, 9),)
);
Ok(())
}
#[test]
fn test_else_range() -> Result<()> {
let contents = r#"
for x in y:
pass
else:
pass
"#
.trim();
let program = parser::parse_program(contents, "<filename>")?;
let stmt = program.first().unwrap();
let locator = Locator::new(contents);
let range = else_range(stmt, &locator).unwrap();
assert_eq!(range.location.row(), 3);
assert_eq!(range.location.column(), 0);
assert_eq!(range.end_location.row(), 3);
assert_eq!(range.end_location.column(), 4);
Ok(())
}
#[test]
fn test_first_colon_range() {
let contents = "with a: pass";
let locator = Locator::new(contents);
let range = first_colon_range(
Range::new(Location::new(1, 0), Location::new(1, contents.len())),
&locator,
)
.unwrap();
assert_eq!(range.location.row(), 1);
assert_eq!(range.location.column(), 6);
assert_eq!(range.end_location.row(), 1);
assert_eq!(range.end_location.column(), 7);
}
#[test]
fn test_elif_else_range() -> Result<()> {
let contents = "
if a:
...
elif b:
...
"
.trim_start();
let program = parser::parse_program(contents, "<filename>")?;
let stmt = program.first().unwrap();
let locator = Locator::new(contents);
let range = elif_else_range(stmt, &locator).unwrap();
assert_eq!(range.location.row(), 3);
assert_eq!(range.location.column(), 0);
assert_eq!(range.end_location.row(), 3);
assert_eq!(range.end_location.column(), 4);
let contents = "
if a:
...
else:
...
"
.trim_start();
let program = parser::parse_program(contents, "<filename>")?;
let stmt = program.first().unwrap();
let locator = Locator::new(contents);
let range = elif_else_range(stmt, &locator).unwrap();
assert_eq!(range.location.row(), 3);
assert_eq!(range.location.column(), 0);
assert_eq!(range.end_location.row(), 3);
assert_eq!(range.end_location.column(), 4);
Ok(())
}
}