refactor: Clean up function::execute (#833)

it's gotten a bit tough to reason about imo due to the different execution modes we have now
This commit is contained in:
Lukas Wirth 2025-04-30 10:42:14 +02:00 committed by GitHub
parent 79afd59ed5
commit 5b5e982994
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 217 additions and 170 deletions

View file

@ -1,11 +1,11 @@
use std::sync::atomic::Ordering;
use std::sync::atomic::{AtomicBool, Ordering};
use crate::cycle::{CycleRecoveryStrategy, MAX_ITERATIONS};
use crate::function::memo::Memo;
use crate::function::{Configuration, IngredientImpl};
use crate::zalsa::ZalsaDatabase;
use crate::zalsa_local::ActiveQueryGuard;
use crate::{Database, Event, EventKind};
use crate::zalsa::{MemoIngredientIndex, Zalsa, ZalsaDatabase};
use crate::zalsa_local::{ActiveQueryGuard, QueryRevisions};
use crate::{Database, Event, EventKind, Id, Revision};
impl<C> IngredientImpl<C>
where
@ -20,14 +20,13 @@ where
/// * `db`, the database.
/// * `active_query`, the active stack frame for the query to execute.
/// * `opt_old_memo`, the older memo, if any existed. Used for backdating.
#[inline(never)]
pub(super) fn execute<'db>(
&'db self,
db: &'db C::DbView,
mut active_query: ActiveQueryGuard<'db>,
active_query: ActiveQueryGuard<'db>,
opt_old_memo: Option<&Memo<C::Output<'db>>>,
) -> &'db Memo<C::Output<'db>> {
let zalsa = db.zalsa();
let revision_now = zalsa.current_revision();
let database_key_index = active_query.database_key_index;
let id = database_key_index.key_index();
@ -39,8 +38,102 @@ where
})
});
let zalsa = db.zalsa();
let memo_ingredient_index = self.memo_ingredient_index(zalsa, id);
let (new_value, mut revisions) = match C::CYCLE_STRATEGY {
CycleRecoveryStrategy::Panic => {
Self::execute_query(db, active_query, opt_old_memo, zalsa.current_revision(), id)
}
CycleRecoveryStrategy::FallbackImmediate => {
let (mut new_value, mut revisions) = Self::execute_query(
db,
active_query,
opt_old_memo,
zalsa.current_revision(),
id,
);
if !revisions.cycle_heads.is_empty() {
// Did the new result we got depend on our own provisional value, in a cycle?
if revisions.cycle_heads.contains(&database_key_index) {
// Ignore the computed value, leave the fallback value there.
let memo = self
.get_memo_from_table_for(zalsa, id, memo_ingredient_index)
.unwrap_or_else(|| {
unreachable!(
"{database_key_index:#?} is a `FallbackImmediate` cycle head, \
but no memo found"
)
});
// We need to mark the memo as finalized so other cycle participants that have fallbacks
// will be verified (participants that don't have fallbacks will not be verified).
memo.revisions.verified_final.store(true, Ordering::Release);
return memo;
}
// If we're in the middle of a cycle and we have a fallback, use it instead.
// Cycle participants that don't have a fallback will be discarded in
// `validate_provisional()`.
let cycle_heads = revisions.cycle_heads;
let active_query = db.zalsa_local().push_query(database_key_index, 0);
new_value = C::cycle_initial(db, C::id_to_input(db, id));
revisions = active_query.pop();
// We need to set `cycle_heads` and `verified_final` because it needs to propagate to the callers.
// When verifying this, we will see we have fallback and mark ourselves verified.
revisions.cycle_heads = cycle_heads;
revisions.verified_final = AtomicBool::new(false);
}
(new_value, revisions)
}
CycleRecoveryStrategy::Fixpoint => self.execute_maybe_iterate(
db,
active_query,
opt_old_memo,
zalsa,
id,
memo_ingredient_index,
),
};
if let Some(old_memo) = opt_old_memo {
// If the new value is equal to the old one, then it didn't
// really change, even if some of its inputs have. So we can
// "backdate" its `changed_at` revision to be the same as the
// old value.
self.backdate_if_appropriate(old_memo, &mut revisions, &new_value);
// Diff the new outputs with the old, to discard any no-longer-emitted
// outputs and update the tracked struct IDs for seeding the next revision.
let provisional = !revisions.cycle_heads.is_empty();
self.diff_outputs(
zalsa,
db,
database_key_index,
old_memo,
&mut revisions,
provisional,
);
}
self.insert_memo(
zalsa,
id,
Memo::new(Some(new_value), zalsa.current_revision(), revisions),
memo_ingredient_index,
)
}
#[inline]
fn execute_maybe_iterate<'db>(
&'db self,
db: &'db C::DbView,
mut active_query: ActiveQueryGuard<'db>,
opt_old_memo: Option<&Memo<C::Output<'db>>>,
zalsa: &'db Zalsa,
id: Id,
memo_ingredient_index: MemoIngredientIndex,
) -> (C::Output<'db>, QueryRevisions) {
let database_key_index = active_query.database_key_index;
let mut iteration_count: u32 = 0;
let mut fell_back = false;
@ -48,190 +141,141 @@ where
// Initially it's set to None, because the initial provisional value is created lazily,
// only when a cycle is actually encountered.
let mut opt_last_provisional: Option<&Memo<<C as Configuration>::Output<'db>>> = None;
loop {
// If we already executed this query once, then use the tracked-struct ids from the
// previous execution as the starting point for the new one.
if let Some(old_memo) = opt_old_memo {
active_query.seed_tracked_struct_ids(&old_memo.revisions.tracked_struct_ids);
}
// Query was not previously executed, or value is potentially
// stale, or value is absent. Let's execute!
let mut new_value = C::execute(db, C::id_to_input(db, id));
if let Some(old_memo) = opt_old_memo {
// Copy over all outputs from a previous iteration.
// This is necessary to ensure that tracked struct created during the previous iteration
// (and are owned by the query) are alive even if the query in this iteration no longer creates them.
// The query not re-creating the tracked struct doesn't guarantee that there
// aren't any other queries depending on it.
if old_memo.may_be_provisional() && old_memo.verified_at.load() == revision_now {
active_query.append_outputs(old_memo.revisions.origin.outputs());
}
}
let mut revisions = active_query.pop();
let (mut new_value, mut revisions) =
Self::execute_query(db, active_query, opt_old_memo, zalsa.current_revision(), id);
// Did the new result we got depend on our own provisional value, in a cycle?
if revisions.cycle_heads.contains(&database_key_index) {
if C::CYCLE_STRATEGY == CycleRecoveryStrategy::FallbackImmediate {
// Ignore the computed value, leave the fallback value there.
let last_provisional_value = if let Some(last_provisional) = opt_last_provisional {
// We have a last provisional value from our previous time around the loop.
last_provisional.value.as_ref()
} else {
// This is our first time around the loop; a provisional value must have been
// inserted into the memo table when the cycle was hit, so let's pull our
// initial provisional value from there.
let memo = self
.get_memo_from_table_for(zalsa, id, memo_ingredient_index)
.unwrap_or_else(|| {
unreachable!(
"{database_key_index:#?} is a `FallbackImmediate` cycle head, \
but no memo found"
"{database_key_index:#?} is a cycle head, \
but no provisional memo found"
)
});
// We need to mark the memo as finalized so other cycle participants that have fallbacks
// will be verified (participants that don't have fallbacks will not be verified).
memo.revisions.verified_final.store(true, Ordering::Release);
// SAFETY: This is ours memo.
return unsafe { self.extend_memo_lifetime(memo) };
} else if C::CYCLE_STRATEGY == CycleRecoveryStrategy::Fixpoint {
let last_provisional_value =
if let Some(last_provisional) = opt_last_provisional {
// We have a last provisional value from our previous time around the loop.
last_provisional.value.as_ref()
} else {
// This is our first time around the loop; a provisional value must have been
// inserted into the memo table when the cycle was hit, so let's pull our
// initial provisional value from there.
let memo = self
.get_memo_from_table_for(zalsa, id, memo_ingredient_index)
.unwrap_or_else(|| {
unreachable!(
"{database_key_index:#?} is a cycle head, \
but no provisional memo found"
)
});
debug_assert!(memo.may_be_provisional());
memo.value.as_ref()
};
// SAFETY: The `LRU` does not run mid-execution, so the value remains filled
let last_provisional_value =
unsafe { last_provisional_value.unwrap_unchecked() };
tracing::debug!(
"{database_key_index:?}: execute: \
debug_assert!(memo.may_be_provisional());
memo.value.as_ref()
};
// SAFETY: The `LRU` does not run mid-execution, so the value remains filled
let last_provisional_value = unsafe { last_provisional_value.unwrap_unchecked() };
tracing::debug!(
"{database_key_index:?}: execute: \
I am a cycle head, comparing last provisional value with new value"
);
// If the new result is equal to the last provisional result, the cycle has
// converged and we are done.
if !C::values_equal(&new_value, last_provisional_value) {
if fell_back {
// We fell back to a value last iteration, but the fallback didn't result
// in convergence. We only have bad options here: continue iterating
// (ignoring the request to fall back), or forcibly use the fallback and
// leave the cycle in an inconsistent state (we'll be using a value for
// this query that it doesn't evaluate to, given its inputs). Maybe we'll
// have to go with the latter, but for now let's panic and see if real use
// cases need non-converging fallbacks.
panic!("{database_key_index:?}: execute: fallback did not converge");
);
// If the new result is equal to the last provisional result, the cycle has
// converged and we are done.
if !C::values_equal(&new_value, last_provisional_value) {
if fell_back {
// We fell back to a value last iteration, but the fallback didn't result
// in convergence. We only have bad options here: continue iterating
// (ignoring the request to fall back), or forcibly use the fallback and
// leave the cycle in an inconsistent state (we'll be using a value for
// this query that it doesn't evaluate to, given its inputs). Maybe we'll
// have to go with the latter, but for now let's panic and see if real use
// cases need non-converging fallbacks.
panic!("{database_key_index:?}: execute: fallback did not converge");
}
// We are in a cycle that hasn't converged; ask the user's
// cycle-recovery function what to do:
match C::recover_from_cycle(
db,
&new_value,
iteration_count,
C::id_to_input(db, id),
) {
crate::CycleRecoveryAction::Iterate => {
tracing::debug!("{database_key_index:?}: execute: iterate again");
}
// We are in a cycle that hasn't converged; ask the user's
// cycle-recovery function what to do:
match C::recover_from_cycle(
db,
&new_value,
iteration_count,
C::id_to_input(db, id),
) {
crate::CycleRecoveryAction::Iterate => {
tracing::debug!("{database_key_index:?}: execute: iterate again");
}
crate::CycleRecoveryAction::Fallback(fallback_value) => {
tracing::debug!(
crate::CycleRecoveryAction::Fallback(fallback_value) => {
tracing::debug!(
"{database_key_index:?}: execute: user cycle_fn says to fall back"
);
new_value = fallback_value;
// We have to insert the fallback value for this query and then iterate
// one more time to fill in correct values for everything else in the
// cycle based on it; then we'll re-insert it as final value.
fell_back = true;
}
new_value = fallback_value;
// We have to insert the fallback value for this query and then iterate
// one more time to fill in correct values for everything else in the
// cycle based on it; then we'll re-insert it as final value.
fell_back = true;
}
// `iteration_count` can't overflow as we check it against `MAX_ITERATIONS`
// which is less than `u32::MAX`.
iteration_count += 1;
if iteration_count > MAX_ITERATIONS {
panic!("{database_key_index:?}: execute: too many cycle iterations");
}
db.salsa_event(&|| {
Event::new(EventKind::WillIterateCycle {
database_key: database_key_index,
iteration_count,
fell_back,
})
});
revisions
.cycle_heads
.update_iteration_count(database_key_index, iteration_count);
opt_last_provisional = Some(self.insert_memo(
zalsa,
id,
Memo::new(Some(new_value), revision_now, revisions),
memo_ingredient_index,
));
active_query = db
.zalsa_local()
.push_query(database_key_index, iteration_count);
continue;
}
tracing::debug!(
"{database_key_index:?}: execute: fixpoint iteration has a final value"
);
revisions.cycle_heads.remove(&database_key_index);
// `iteration_count` can't overflow as we check it against `MAX_ITERATIONS`
// which is less than `u32::MAX`.
iteration_count += 1;
if iteration_count > MAX_ITERATIONS {
panic!("{database_key_index:?}: execute: too many cycle iterations");
}
db.salsa_event(&|| {
Event::new(EventKind::WillIterateCycle {
database_key: database_key_index,
iteration_count,
fell_back,
})
});
revisions
.cycle_heads
.update_iteration_count(database_key_index, iteration_count);
opt_last_provisional = Some(self.insert_memo(
zalsa,
id,
Memo::new(Some(new_value), zalsa.current_revision(), revisions),
memo_ingredient_index,
));
active_query = db
.zalsa_local()
.push_query(database_key_index, iteration_count);
continue;
}
tracing::debug!(
"{database_key_index:?}: execute: fixpoint iteration has a final value"
);
revisions.cycle_heads.remove(&database_key_index);
}
tracing::debug!("{database_key_index:?}: execute: result.revisions = {revisions:#?}");
if !revisions.cycle_heads.is_empty()
&& C::CYCLE_STRATEGY == CycleRecoveryStrategy::FallbackImmediate
{
// If we're in the middle of a cycle and we have a fallback, use it instead.
// Cycle participants that don't have a fallback will be discarded in
// `validate_provisional()`.
let cycle_heads = revisions.cycle_heads;
let active_query = db.zalsa_local().push_query(database_key_index, 0);
new_value = C::cycle_initial(db, C::id_to_input(db, id));
revisions = active_query.pop();
// We need to set `cycle_heads` and `verified_final` because it needs to propagate to the callers.
// When verifying this, we will see we have fallback and mark ourselves verified.
revisions.cycle_heads = cycle_heads;
*revisions.verified_final.get_mut() = false;
}
if let Some(old_memo) = opt_old_memo {
// If the new value is equal to the old one, then it didn't
// really change, even if some of its inputs have. So we can
// "backdate" its `changed_at` revision to be the same as the
// old value.
self.backdate_if_appropriate(old_memo, &mut revisions, &new_value);
// Diff the new outputs with the old, to discard any no-longer-emitted
// outputs and update the tracked struct IDs for seeding the next revision.
let provisional = !revisions.cycle_heads.is_empty();
self.diff_outputs(
zalsa,
db,
database_key_index,
old_memo,
&mut revisions,
provisional,
);
}
return self.insert_memo(
zalsa,
id,
Memo::new(Some(new_value), revision_now, revisions),
memo_ingredient_index,
);
break (new_value, revisions);
}
}
#[inline]
fn execute_query<'db>(
db: &'db C::DbView,
active_query: ActiveQueryGuard<'db>,
opt_old_memo: Option<&Memo<C::Output<'db>>>,
current_revision: Revision,
id: Id,
) -> (C::Output<'db>, QueryRevisions) {
// If we already executed this query once, then use the tracked-struct ids from the
// previous execution as the starting point for the new one.
if let Some(old_memo) = opt_old_memo {
active_query.seed_tracked_struct_ids(&old_memo.revisions.tracked_struct_ids);
}
// Query was not previously executed, or value is potentially
// stale, or value is absent. Let's execute!
let new_value = C::execute(db, C::id_to_input(db, id));
if let Some(old_memo) = opt_old_memo {
// Copy over all outputs from a previous iteration.
// This is necessary to ensure that tracked struct created during the previous iteration
// (and are owned by the query) are alive even if the query in this iteration no longer creates them.
// The query not re-creating the tracked struct doesn't guarantee that there
// aren't any other queries depending on it.
if old_memo.may_be_provisional() && old_memo.verified_at.load() == current_revision {
active_query.append_outputs(old_memo.revisions.origin.outputs());
}
}
(new_value, active_query.pop())
}
}