## Summary
I don't love this, but it turns out that setuptools is not robust to
parallel builds: https://github.com/pypa/setuptools/issues/3119. As a
result, if you run uv from multiple processes, and they each attempt to
build the same source distribution, you can hit failures.
This PR applies an advisory lock to the source distribution directory.
We apply it unconditionally, even if we ultimately find something in the
cache and _don't_ do a build, which helps ensure that we only build the
distribution once (and wait for that build to complete) rather than
kicking off builds from each thread.
Closes https://github.com/astral-sh/uv/issues/3512.
## Test Plan
Ran:
```sh
#!/bin/bash
make_venv(){
target/debug/uv venv $1
source $1/bin/activate
target/debug/uv pip install opentracing --no-deps --verbose
}
for i in {1..8}
do
make_venv ./$1/$i &
done
```
## Summary
I think this is overall good change because it explicitly encodes (in
the type system) something that was previously implicit. I'm not a huge
fan of the names here, open to input.
It covers some of https://github.com/astral-sh/uv/issues/3506 but I
don't think it _closes_ it.
## Summary
This PR consolidates the concurrency limits used throughout `uv` and
exposes two limits, `UV_CONCURRENT_DOWNLOADS` and
`UV_CONCURRENT_BUILDS`, as environment variables.
Currently, `uv` has a number of concurrent streams that it buffers using
relatively arbitrary limits for backpressure. However, many of these
limits are conflated. We run a relatively small number of tasks overall
and should start most things as soon as possible. What we really want to
limit are three separate operations:
- File I/O. This is managed by tokio's blocking pool and we should not
really have to worry about it.
- Network I/O.
- Python build processes.
Because the current limits span a broad range of tasks, it's possible
that a limit meant for network I/O is occupied by tasks performing
builds, reading from the file system, or even waiting on a `OnceMap`. We
also don't limit build processes that end up being required to perform a
download. While this may not pose a performance problem because our
limits are relatively high, it does mean that the limits do not do what
we want, making it tricky to expose them to users
(https://github.com/astral-sh/uv/issues/1205,
https://github.com/astral-sh/uv/issues/3311).
After this change, the limits on network I/O and build processes are
centralized and managed by semaphores. All other tasks are unbuffered
(note that these tasks are still bounded, so backpressure should not be
a problem).
## Summary
All of the resolver code is run on the main thread, so a lot of the
`Send` bounds and uses of `DashMap` and `Arc` are unnecessary. We could
also switch to using single-threaded versions of `Mutex` and `Notify` in
some places, but there isn't really a crate that provides those I would
be comfortable with using.
The `Arc` in `OnceMap` can't easily be removed because of the uv-auth
code which uses the
[reqwest-middleware](https://docs.rs/reqwest-middleware/latest/reqwest_middleware/trait.Middleware.html)
crate, that seems to adds unnecessary `Send` bounds because of
`async-trait`. We could duplicate the code and create a `OnceMapLocal`
variant, but I don't feel that's worth it.
## Introduction
PEP 621 is limited. Specifically, it lacks
* Relative path support
* Editable support
* Workspace support
* Index pinning or any sort of index specification
The semantics of urls are a custom extension, PEP 440 does not specify
how to use git references or subdirectories, instead pip has a custom
stringly format. We need to somehow support these while still stying
compatible with PEP 621.
## `tool.uv.source`
Drawing inspiration from cargo, poetry and rye, we add `tool.uv.sources`
or (for now stub only) `tool.uv.workspace`:
```toml
[project]
name = "albatross"
version = "0.1.0"
dependencies = [
"tqdm >=4.66.2,<5",
"torch ==2.2.2",
"transformers[torch] >=4.39.3,<5",
"importlib_metadata >=7.1.0,<8; python_version < '3.10'",
"mollymawk ==0.1.0"
]
[tool.uv.sources]
tqdm = { git = "https://github.com/tqdm/tqdm", rev = "cc372d09dcd5a5eabdc6ed4cf365bdb0be004d44" }
importlib_metadata = { url = "https://github.com/python/importlib_metadata/archive/refs/tags/v7.1.0.zip" }
torch = { index = "torch-cu118" }
mollymawk = { workspace = true }
[tool.uv.workspace]
include = [
"packages/mollymawk"
]
[tool.uv.indexes]
torch-cu118 = "https://download.pytorch.org/whl/cu118"
```
See `docs/specifying_dependencies.md` for a detailed explanation of the
format. The basic gist is that `project.dependencies` is what ends up on
pypi, while `tool.uv.sources` are your non-published additions. We do
support the full range or PEP 508, we just hide it in the docs and
prefer the exploded table for easier readability and less confusing with
actual url parts.
This format should eventually be able to subsume requirements.txt's
current use cases. While we will continue to support the legacy `uv pip`
interface, this is a piece of the uv's own top level interface. Together
with `uv run` and a lockfile format, you should only need to write
`pyproject.toml` and do `uv run`, which generates/uses/updates your
lockfile behind the scenes, no more pip-style requirements involved. It
also lays the groundwork for implementing index pinning.
## Changes
This PR implements:
* Reading and lowering `project.dependencies`,
`project.optional-dependencies` and `tool.uv.sources` into a new
requirements format, including:
* Git dependencies
* Url dependencies
* Path dependencies, including relative and editable
* `pip install` integration
* Error reporting for invalid `tool.uv.sources`
* Json schema integration (works in pycharm, see below)
* Draft user-level docs (see `docs/specifying_dependencies.md`)
It does not implement:
* No `pip compile` testing, deprioritizing towards our own lockfile
* Index pinning (stub definitions only)
* Development dependencies
* Workspace support (stub definitions only)
* Overrides in pyproject.toml
* Patching/replacing dependencies
One technically breaking change is that we now require user provided
pyproject.toml to be valid wrt to PEP 621. Included files still fall
back to PEP 517. That means `pip install -r requirements.txt` requires
it to be valid while `pip install -r requirements.txt` with `-e .` as
content falls back to PEP 517 as before.
## Implementation
The `pep508` requirement is replaced by a new `UvRequirement` (name up
for bikeshedding, not particularly attached to the uv prefix). The still
existing `pep508_rs::Requirement` type is a url format copied from pip's
requirements.txt and doesn't appropriately capture all features we
want/need to support. The bulk of the diff is changing the requirement
type throughout the codebase.
We still use `VerbatimUrl` in many places, where we would expect a
parsed/decomposed url type, specifically:
* Reading core metadata except top level pyproject.toml files, we fail a
step later instead if the url isn't supported.
* Allowed `Urls`.
* `PackageId` with a custom `CanonicalUrl` comparison, instead of
canonicalizing urls eagerly.
* `PubGrubPackage`: We eventually convert the `VerbatimUrl` back to a
`Dist` (`Dist::from_url`), instead of remembering the url.
* Source dist types: We use verbatim url even though we know and require
that these are supported urls we can and have parsed.
I tried to make improve the situation be replacing `VerbatimUrl`, but
these changes would require massive invasive changes (see e.g.
https://github.com/astral-sh/uv/pull/3253). A main problem is the ref
`VersionOrUrl` and applying overrides, which assume the same
requirement/url type everywhere. In its current form, this PR increases
this tech debt.
I've tried to split off PRs and commits, but the main refactoring is
still a single monolith commit to make it compile and the tests pass.
## Demo
Adding
d1ae3b85d5/pyproject.json
as json schema (v7) to pycharm for `pyproject.toml`, you can try the IDE
support already:

[dove.webm](c293c272-c80b-459d-8c95-8c46a8d198a1)
In *some* places in our crates, `serde` (and `rkyv`) are optional
dependencies. I believe this was done out of reasons of "good sense,"
that is, it follows a Rust ecosystem pattern where serde integration
tends to be an opt-in crate feature. (And similarly for `rkyv`.)
However, ultimately, `uv` itself requires `serde` and `rkyv` to
function. Since our crates are strictly internal, there are limited
consumers for our crates without `serde` (and `rkyv`) enabled. I think
one possibility is that optional `serde` (and `rkyv`) integration means
that someone can do this:
cargo test -p pep440_rs
And this will run tests _without_ `serde` or `rkyv` enabled. That in
turn could lead to faster iteration time by reducing compile times. But,
I'm not sure this is worth supporting. The iterative compilation times
of
individual crates are probably fast enough in debug mode, even with
`serde` and `rkyv` enabled. Namely, `serde` and `rkyv` themselves
shouldn't need to be re-compiled in most cases. On `main`:
```
from-scratch: `cargo test -p pep440_rs --lib` 0.685
incremental: `cargo test -p pep440_rs --lib` 0.278s
from-scratch: `cargo test -p pep440_rs --features serde,rkyv --lib` 3.948s
incremental: `cargo test -p pep440_rs --features serde,rkyv --lib` 0.321s
```
So while a from-scratch build does take significantly longer, an
incremental build is about the same.
The benefit of doing this change is two-fold:
1. It brings out crates into alignment with "reality." In particular,
some crates were _implicitly_ relying on `serde` being enabled
without explicitly declaring it. This technically means that our
`Cargo.toml`s were wrong in some cases, but it is hard to observe it
because of feature unification in a Cargo workspace.
2. We no longer need to deal with the cognitive burden of writing
`#[cfg_attr(feature = "serde", ...)]` everywhere.
## Summary
I found some of these too bare (e.g., when they _just_ show a package
name with no other information). For me, this makes it easier to
differentiate error message copy from data. But open to other opinions.
Take a look at the fixture changes and LMK!
Add a dedicated error type for direct url parsing. This change is broken
out from the new uv requirement type, which uses direct url parsing
internally.
## Summary
If there are no hashes for a given package, we now return
`Validate(&[])` so that the policy is impossible to satisfy. Previously,
we returned `None`, which is always satisfied.
We don't really ever expect to hit this, because we detect this case in
the resolver and raise a different error. But if we have a bug
somewhere, it's better to fail with an error than silently let the
package through.
## Summary
This PR enables `--require-hashes` with unnamed requirements. The key
change is that `PackageId` becomes `VersionId` (since it refers to a
package at a specific version), and the new `PackageId` consists of
_either_ a package name _or_ a URL. The hashes are keyed by `PackageId`,
so we can generate the `RequiredHashes` before we have names for all
packages, and enforce them throughout.
Closes#2979.
## Summary
Similar to `Revision`, we now store IDs in the `Archive` entires rather
than absolute paths. This makes the cache robust to moves, etc.
Closes https://github.com/astral-sh/uv/issues/2908.
## Summary
This PR formalizes some of the concepts we use in the cache for
"pointers to things".
In the wheel cache, we have files like
`annotated_types-0.6.0-py3-none-any.http`. This represents an unzipped
wheel, cached alongside an HTTP caching policy. We now have a struct for
this to encapsulate the logic: `HttpArchivePointer`.
Similarly, we have files like `annotated_types-0.6.0-py3-none-any.rev`.
This represents an unzipped local wheel, alongside with a timestamp. We
now have a struct for this to encapsulate the logic:
`LocalArchivePointer`.
We have similar structs for source distributions too.
## Summary
This PR enables hash generation for URL requirements when the user
provides `--generate-hashes` to `pip compile`. While we include the
hashes from the registry already, today, we omit hashes for URLs.
To power hash generation, we introduce a `HashPolicy` abstraction:
```rust
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum HashPolicy<'a> {
/// No hash policy is specified.
None,
/// Hashes should be generated (specifically, a SHA-256 hash), but not validated.
Generate,
/// Hashes should be validated against a pre-defined list of hashes. If necessary, hashes should
/// be generated so as to ensure that the archive is valid.
Validate(&'a [HashDigest]),
}
```
All of the methods on the distribution database now accept this policy,
instead of accepting `&'a [HashDigest]`.
Closes#2378.
## Summary
This PR modifies the distribution database to return both the
`Metadata23` and the computed hashes when clients request metadata.
No behavior changes, but this will be necessary to power
`--generate-hashes`.
## Summary
This PR adds support for hash-checking mode in `pip install` and `pip
sync`. It's a large change, both in terms of the size of the diff and
the modifications in behavior, but it's also one that's hard to merge in
pieces (at least, with any test coverage) since it needs to work
end-to-end to be useful and testable.
Here are some of the most important highlights:
- We store hashes in the cache. Where we previously stored pointers to
unzipped wheels in the `archives` directory, we now store pointers with
a set of known hashes. So every pointer to an unzipped wheel also
includes its known hashes.
- By default, we don't compute any hashes. If the user runs with
`--require-hashes`, and the cache doesn't contain those hashes, we
invalidate the cache, redownload the wheel, and compute the hashes as we
go. For users that don't run with `--require-hashes`, there will be no
change in performance. For users that _do_, the only change will be if
they don't run with `--generate-hashes` -- then they may see some
repeated work between resolution and installation, if they use `pip
compile` then `pip sync`.
- Many of the distribution types now include a `hashes` field, like
`CachedDist` and `LocalWheel`.
- Our behavior is similar to pip, in that we enforce hashes when pulling
any remote distributions, and when pulling from our own cache. Like pip,
though, we _don't_ enforce hashes if a distribution is _already_
installed.
- Hash validity is enforced in a few different places:
1. During resolution, we enforce hash validity based on the hashes
reported by the registry. If we need to access a source distribution,
though, we then enforce hash validity at that point too, prior to
running any untrusted code. (This is enforced in the distribution
database.)
2. In the install plan, we _only_ add cached distributions that have
matching hashes. If a cached distribution is missing any hashes, or the
hashes don't match, we don't return them from the install plan.
3. In the downloader, we _only_ return distributions with matching
hashes.
4. The final combination of "things we install" are: (1) the wheels from
the cache, and (2) the downloaded wheels. So this ensures that we never
install any mismatching distributions.
- Like pip, if `--require-hashes` is provided, we require that _all_
distributions are pinned with either `==` or a direct URL. We also
require that _all_ distributions have hashes.
There are a few notable TODOs:
- We don't support hash-checking mode for unnamed requirements. These
should be _somewhat_ rare, though? Since `pip compile` never outputs
unnamed requirements. I can fix this, it's just some additional work.
- We don't automatically enable `--require-hashes` with a hash exists in
the requirements file. We require `--require-hashes`.
Closes#474.
## Test Plan
I'd like to add some tests for registries that report incorrect hashes,
but otherwise: `cargo test`
To get more insights into test performance, allow instrumenting tests
with tracing-durations-export.
Usage:
```shell
# A single test
TRACING_DURATIONS_TEST_ROOT=$(pwd)/target/test-traces cargo test --features tracing-durations-export --test pip_install_scenarios no_binary -- --exact
# All tests
TRACING_DURATIONS_TEST_ROOT=$(pwd)/target/test-traces cargo nextest run --features tracing-durations-export
```
Then we can e.g. look at
`target/test-traces/pip_install_scenarios::no_binary.svg` and see the
builds it performs:

## Summary
If we build a source distribution from the registry, and the version
doesn't match that of the filename, we should error, just as we do for
mismatched package names. However, we should also backtrack here, which
we didn't previously.
Closes https://github.com/astral-sh/uv/issues/2953.
## Test Plan
Verified that `cargo run pip install docutils --verbose --no-cache
--reinstall` installs `docutils==0.21` instead of the invalid
`docutils==0.21.post1`.
In the logs, I see:
```
WARN Unable to extract metadata for docutils: Package metadata version `0.21` does not match given version `0.21.post1`
```
Needed to prevent circular dependencies in my toolchain work (#2931). I
think this is probably a reasonable change as we move towards persistent
configuration too?
Unfortunately `BuildIsolation` needs to be in `uv-types` to avoid
circular dependencies still. We might be able to resolve that in the
future.
## Summary
When you specify a source distribution via a path, it can either be a
path to an archive (like a `.tar.gz` file), or a source tree (a
directory). Right now, we handle both paths through the same methods in
the source database. This PR splits them up into separate handlers.
This will make hash generation a little easier, since we need to
generate hashes for archives, but _can't_ generate hashes for source
trees.
It also means that we can now store the unzipped source distribution in
the cache (in the case of archives), and avoid unzipping the source
distribution needlessly on every invocation; and, overall, let's un
enforce clearer expectations between the two routes (e.g., what errors
are possible vs. not), at the cost of duplicating some code.
Closes#2760 (incidentally -- not exactly the motivation for the change,
but it did accomplish it).
## Summary
I think this is a much clearer name for this concept: the set of
"versions" of a given wheel or source distribution. We also use
"Manifest" elsewhere to refer to the set of requirements, constraints,
etc., so this was overloaded.
## Summary
Right now, the path-based wheel cache just looks at the symlink to the
archives directory, checks the timestamp on it, and continues with that
symlink as long as the timestamp is up-to-date.
The HTTP-based wheel meanwhile, uses an intermediary `.http` file, which
includes the HTTP caching information. The `.http` file's payload is
just a path pointing to an entry in the archives directory.
This PR modifies the path-based codepaths to use a similar cache file,
which stores a timestamp along with a path to the archives directory.
The main advantage here is that we can add other data to this cache file
(namely, hashes in the future).
## Test Plan
Beyond existing tests, I also verified that this doesn't require a
version bump:
```
git checkout main
cargo run pip install ~/Downloads/zeal-0.0.1-py3-none-any.whl --cache-dir baz --reinstall
git checkout charlie/manifest
cargo run pip install ~/Downloads/zeal-0.0.1-py3-none-any.whl --cache-dir baz --reinstall
cargo run pip install ~/Downloads/zeal-0.0.1-py3-none-any.whl --cache-dir baz --reinstall --refresh
```
## Summary
I think this is kind of just an oversight. If a wheel is available via
`--find-links`, and the index is "local", we never find it in the cache.
## Test Plan
`cargo test`
## Summary
In all cases, we unzip these immediately after returning. By moving the
unzipping into the database, we can remove a bunch of code (coming in a
separate PR), and pave the way for hash-checking, since hash generation
will _also_ happen in the database, and splitting the caching layers
across the database and the unzipper creates complications.
Closes#2863.
## Summary
Upgrading `rs-async-zip` enables us to support data descriptors in
streaming. This both greatly improves performance for indexes that use
data descriptors _and_ ensures that we support them in a few other
places (e.g., zipped source distributions created in Finder).
Closes#2808.
## Summary
Rather than storing the `redirects` on the resolver, this PR just
re-uses the "convert this URL to precise" logic when we convert to a
`Resolution` after-the-fact. I think this is a lot simpler: it removes
state from the resolver, and simplifies a lot of the hooks around
distribution fetching (e.g., `get_or_build_wheel_metadata` no longer
returns `(Metadata23, Option<Url>)`).
## Summary
I noticed in #2769 that I was now stripping `.git` suffixes from Git
URLs after resolving to a precise commit. This PR cleans up the internal
caching to use a better canonical representation: a `RepositoryUrl`
along with a `GitReference`, instead of a `GitUrl` which can contain
non-canonical data. This gives us both better fidelity (preserving the
`.git`, along with any casing that the user provided when defining the
URL) and is overall cleaner and more robust.
## Summary
This PR leverages our lookahead direct URL resolution to significantly
improve the range of Git URLs that we can accept (e.g., if a user
provides the same requirement, once as a direct dependency, and once as
a tag). We did some of this in #2285, but the solution here is more
general and works for arbitrary transitive URLs.
Closes https://github.com/astral-sh/uv/issues/2614.
## Summary
We can access cache from `BuildContext`. This mirrors
`SourceDistCachedBuilder`, which doesn't accept `Cache` as an argument
and always accesses it through `BuildContext`.
## Summary
This looks like a big change but it really isn't. Rather, I just split
`get_or_build_wheel` into separate `get_wheel` and `build_wheel` methods
internally, which made `get_or_build_wheel_metadata` capable of _not_
relying on `Tags`, which in turn makes it easier for us to use the
`DistributionDatabase` in various places without having it coupled to an
interpreter or environment (something we already did for
`SourceDistributionBuilder`).
## Summary
Now that we're resolving metadata more aggressively for local sources,
it's worth doing this. We now pull metadata from the `pyproject.toml`
directly if it's statically-defined.
Closes https://github.com/astral-sh/uv/issues/2629.
This is driving me a little crazy and is becoming a larger problem in
#2596 where I need to move more types (like `Upgrade` and `Reinstall`)
into this crate. Anything that's shared across our core resolver,
install, and build crates needs to be defined in this crate to avoid
cyclic dependencies. We've outgrown it being a single file with some
shared traits.
There are no behavioral changes here.