These are noisy relative to the effect they have on the user. It seems
better to prioritize hints on poor resolutions. Notably, it seems hard
to make these "not noisy" ref #11091.
Does not include the "lowest" resolution mode, in which lower bounds are
critical.
uv-install-wheel had the logic for laying out the installation and for
linking a directory in the same module. We split them up to isolate each
module's logic and tighten the crate's interface to only expose top
level members.
No logic changes, only moving code around.
## Summary
This PR extends the thinking in #10525 to platform tags, and then uses
the structured tag enums everywhere, rather than passing around strings.
I think this is a big improvement! It means we're no longer doing ad hoc
tag parsing all over the place.
Enable `lzma-sys/static` through the performance feature not only in uv,
but in uv-dev and uv-bench too, to avoid the system dependency on
`liblzma-dev`.
Ref #9880
This is like #9556, but at the level of all other builds, including the
resolver and installer. Going through PEP 517 to build a package is
slow, so when building a package with the uv build backend, we can call
into the uv build backend directly instead: No temporary virtual env, no
temp venv sync, no python subprocess calls, no uv subprocess calls.
This fast path is gated through preview. Since the uv wheel is not
available at test time, I've manually confirmed the feature by comparing
`uv venv && cargo run pip install . -v --preview --reinstall .` and `uv
venv && cargo run pip install . -v --reinstall .`. When hacking the
preview so that the python uv build backend works without the setting
the direct build also (wheel built with `maturin build --profile
profiling`), we can see the perfomance difference:
```
$ hyperfine --prepare "uv venv" --warmup 3 \
"UV_PREVIEW=1 target/profiling/uv pip install --no-deps --reinstall scripts/packages/built-by-uv --preview" \
"target/profiling/uv pip install --no-deps --reinstall scripts/packages/built-by-uv --find-links target/wheels/"
Benchmark 1: UV_PREVIEW=1 target/profiling/uv pip install --no-deps --reinstall scripts/packages/built-by-uv --preview
Time (mean ± σ): 33.1 ms ± 2.5 ms [User: 25.7 ms, System: 13.0 ms]
Range (min … max): 29.8 ms … 47.3 ms 73 runs
Benchmark 2: target/profiling/uv pip install --no-deps --reinstall scripts/packages/built-by-uv --find-links target/wheels/
Time (mean ± σ): 115.1 ms ± 4.3 ms [User: 54.0 ms, System: 27.0 ms]
Range (min … max): 109.2 ms … 123.8 ms 25 runs
Summary
UV_PREVIEW=1 target/profiling/uv pip install --no-deps --reinstall scripts/packages/built-by-uv --preview ran
3.48 ± 0.29 times faster than target/profiling/uv pip install --no-deps --reinstall scripts/packages/built-by-uv --find-links target/wheels/
```
Do we need a global option to disable the fast path? There is one for
`uv build` because `--force-pep517` moves `uv build` much closer to a
`pip install` from source that a user of a library would experience (See
discussion at #9610), but uv overall doesn't really make guarantees
around the build env of dependencies, so I consider the direct build a
valid option.
Best reviewed commit-by-commit, only the last commit is the actual
implementation, while the preview mode introduction is just a
refactoring touching too many files.
When looking at the build frontend code, I noticed that we always pass
every single field of the shared state to the build dispatch:
```rust
let build_dispatch = BuildDispatch::new(
...
&state.index,
&state.git,
&state.capabilities,
&state.in_flight,
...
);
```
We can abstract this by moving `SharedState` into the build dispatch.
The `BuildDispatch` then has only immutable fields and the
`SharedState`. Since the `SharedState` is all `Arc`s, we can clone it
freely.
## Summary
As discussed in Discord... This struct has evolved to include a lot of
information apart from the `petgraph::Graph`. And I want to add a graph
to the simplified `Resolution` type. So I think this name makes more
sense.
Since this is intended to support _both_ groups and extras, it doesn't
make sense to just name it for groups. And since there isn't really a
word that encapsulates both "extra" and "group," we just fall back to
the super general "conflicts."
We'll rename the variables and other things in the next commit.
This PR adds support for conflicting extras. For example, consider
some optional dependencies like this:
```toml
[project.optional-dependencies]
project1 = ["numpy==1.26.3"]
project2 = ["numpy==1.26.4"]
```
These dependency specifications are not compatible with one another.
And if you ask uv to lock these, you'll get an unresolvable error.
With this PR, you can now add this to your `pyproject.toml` to get
around this:
```toml
[tool.uv]
conflicting-groups = [
[
{ package = "project", extra = "project1" },
{ package = "project", extra = "project2" },
],
]
```
This will make the universal resolver create additional forks
internally that keep the dependencies from the `project1` and
`project2` extras separate. And we make all of this work by reporting
an error at **install** time if one tries to install with two or more
extras that have been declared as conflicting. (If we didn't do this,
it would be possible to try and install two different versions of the
same package into the same environment.)
This PR does *not* add support for conflicting **groups**, but it is
intended to add support in a follow-up PR.
Closes#6981Fixes#8024
Ref #6729, Ref #6830
This should also hopefully unblock
https://github.com/dagster-io/dagster/pull/23814, but in my testing, I
did run into other problems (specifically, with `pywin`). But it does
resolve the problem with incompatible dependencies in two different
extras once you declare `test-airflow-1` and `test-airflow-2` as
conflicting for `dagster-airflow`.
NOTE: This PR doesn't make `conflicting-groups` public yet. And in a
follow-up PR, I plan to switch the name to `conflicts` instead of
`conflicting-groups`, since it will be able to accept conflicting extras
_and_ conflicting groups.
This updates the surrounding code to use the new ResolverEnvironment
type. In some cases, this simplifies caller code by removing case
analysis. There *shouldn't* be any behavior changes here. Some test
snapshots were updated to account for some minor tweaks to error
messages.
I didn't split this up into separate commits because it would have been
too difficult/costly.
## Summary
We shouldn't show these in `uv add`, especially when the thing we're
adding is about to have a lower-bound put on it. Now, we only show these
when the user runs `uv lock` or `uv sync`.
As per
https://matklad.github.io/2021/02/27/delete-cargo-integration-tests.html
Before that, there were 91 separate integration tests binary.
(As discussed on Discord — I've done the `uv` crate, there's still a few
more commits coming before this is mergeable, and I want to see how it
performs in CI and locally).