Add a single job for for fast lint tools. Rustfmt for rust, ruff for
python formatting and linting, prettier avoids inconsistent formatter
changes between pycharm and vscode.
## Summary
This PR adds limited support for PEP 440-compatible local version
testing. Our behavior is _not_ comprehensively in-line with the spec.
However, it does fix by _far_ the biggest practical limitation, and
resolves all the issues that've been raised on uv related to local
versions without introducing much complexity into the resolver, so it
feels like a good tradeoff for me.
I'll summarize the change here, but for more context, see [Andrew's
write-up](https://github.com/astral-sh/uv/issues/1855#issuecomment-1967024866)
in the linked issue.
Local version identifiers are really tricky because of asymmetry.
`==1.2.3` should allow `1.2.3+foo`, but `==1.2.3+foo` should not allow
`1.2.3`. It's very hard to map them to PubGrub, because PubGrub doesn't
think of things in terms of individual specifiers (unlike the PEP 440
spec) -- it only thinks in terms of ranges.
Right now, resolving PyTorch and friends fails, because...
- The user provides requirements like `torch==2.0.0+cu118` and
`torchvision==0.15.1+cu118`.
- We then match those exact versions.
- We then look at the requirements of `torchvision==0.15.1+cu118`, which
includes `torch==2.0.0`.
- Under PEP 440, this is fine, because `torch @ 2.0.0+cu118` should be
compatible with `torch==2.0.0`.
- In our model, though, it's not, because these are different versions.
If we change our comparison logic in various places to allow this, we
risk breaking some fundamental assumptions of PubGrub around version
continuity.
- Thus, we fail to resolve, because we can't accept both `torch @ 2.0.0`
and `torch @ 2.0.0+cu118`.
As compared to the solutions we explored in
https://github.com/astral-sh/uv/issues/1855#issuecomment-1967024866, at
a high level, this approach differs in that we lie about the
_dependencies_ of packages that rely on our local-version-using package,
rather than lying about the versions that exist, or the version we're
returning, etc.
In short:
- When users specify local versions upfront, we keep track of them. So,
above, we'd take note of `torch` and `torchvision`.
- When we convert the dependencies of a package to PubGrub ranges, we
check if the requirement matches `torch` or `torchvision`. If it's
an`==`, we check if it matches (in the above example) for
`torch==2.0.0`. If so, we _change_ the requirement to
`torch==2.0.0+cu118`. (If it's `==` some other version, we return an
incompatibility.)
In other words, we selectively override the declared dependencies by
making them _more specific_ if a compatible local version was specified
upfront.
The net effect here is that the motivating PyTorch resolutions all work.
And, in general, transitive local versions work as expected.
The thing that still _doesn't_ work is: imagine if there were _only_
local versions of `torch` available. Like, `torch @ 2.0.0` didn't exist,
but `torch @ 2.0.0+cpu` did, and `torch @ 2.0.0+gpu` did, and so on.
`pip install torch==2.0.0` would arbitrarily choose one one `2.0.0+cpu`
or `2.0.0+gpu`, and that's correct as per PEP 440 (local version
segments should be completely ignored on `torch==2.0.0`). However, uv
would fail to identify a compatible version. I'd _probably_ prefer to
fix this, although candidly I think our behavior is _ok_ in practice,
and it's never been reported as an issue.
Closes https://github.com/astral-sh/uv/issues/1855.
Closes https://github.com/astral-sh/uv/issues/2080.
Closes https://github.com/astral-sh/uv/issues/2328.
## Summary
This PR attempts to use a similar trick to that we added in
https://github.com/astral-sh/uv/pull/1878, but for post-releases.
In https://github.com/astral-sh/uv/pull/1878, we added a fake "minimum"
version to enable us to treat `< 1.0.0` as _excluding_ pre-releases of
1.0.0.
Today, on `main`, we accept post-releases and local versions in `>
1.0.0`. But per PEP 440, that should _exclude_ post-releases and local
versions, unless the specifier is itself a pre-release, in which case,
pre-releases are allowed (e.g., `> 1.0.0.post0` should allow `>
1.0.0.post1`).
To support this, we add a fake "maximum" version that's greater than all
the post and local releases for a given version. This leverages our last
remaining free bit in the compact representation.
- Now that `packse` is being published to PyPI we can install it from
there.
- Tweaks the tooling around scenario updates to manage a temporary
virtual environment for you.
- Makes use of a new index URL
- Includes local version segment scenarios (supersedes
https://github.com/astral-sh/uv/pull/2022)
## Summary
Even when pre-releases are "allowed", per PEP 440, `pydantic<2.0.0`
should _not_ include pre-releases. This PR modifies the specifier
translation to treat `pydantic<2.0.0` as `pydantic<2.0.0.min0`, where
`min` is an internal-only version segment that's invisible to users.
Closes https://github.com/astral-sh/uv/issues/1641.
Uses `--find-links` to discover vendored scenario build dependencies and
allows us to use `--index-url` instead of `--extra-index-url` to avoid
hitting the real PyPI in scenario tests.
First, replace all usages in files in-place. I used my editor for this.
If someone wants to add a one-liner that'd be fun.
Then, update directory and file names:
```
# Run twice for nested directories
find . -type d -print0 | xargs -0 rename s/puffin/uv/g
find . -type d -print0 | xargs -0 rename s/puffin/uv/g
# Update files
find . -type f -print0 | xargs -0 rename s/puffin/uv/g
```
Then add all the files again
```
# Add all the files again
git add crates
git add python/uv
# This one needs a force-add
git add -f crates/uv-trampoline
```
Instead of dropping versions without a compatible distribution, we track
them as incompatibilities in the solver. This implementation follows
patterns established in https://github.com/astral-sh/puffin/pull/1290.
This required some significant refactoring of how we track incompatible
distributions. Notably:
- `Option<TagPriority>` is now `WheelCompatibility` which allows us to
track the reason a wheel is incompatible instead of just `None`.
- `Candidate` now has a `CandidateDist` with `Compatible` and
`Incompatibile` variants instead of just `ResolvableDist`; candidates
are not strictly compatible anymore
- `ResolvableDist` was renamed to `CompatibleDist`
- `IncompatibleWheel` was given an ordering implementation so we can
track the "most compatible" (but still incompatible) wheel. This allows
us to collapse the reason a version cannot be used to a single
incompatibility.
- The filtering in the `VersionMap` is retained, we still only store one
incompatible wheel per version. This is sufficient for error reporting.
- A `TagCompatibility` type was added for tracking which part of a wheel
tag is incompatible
- `Candidate::validate_python` moved to
`PythonRequirement::validate_dist`
I am doing more refactoring in #1298 — I think a couple passes will be
necessary to clarify the relationships of these types.
Includes improved error message snapshots for multiple incompatible
Python tag types from #1285 — we should add more scenarios for coverage
of behavior when multiple tags with different levels are present.
We use
- An arbitrary ABI hash: `MMMMMM` (six base64 characters)
- An unlikely Jython27 Python tag
For cases that are valid but are never going to be available during
tests.
See https://github.com/zanieb/packse/pull/109
Run `cargo test` on windows in CI, pulling the switch on tier 1 windows
support.
These changes make the bootstrap script virtually required for running
the tests. This gives us consistency between and CI, but it also locks
our tests to python-build-standalone and an articificial `PATH`.
I've deleted the shell bootstrap script in favor of only the python one,
which also runs on windows. I've left the (sym)link creation of the
bootstrap in place, even though it is not used by the tests anymore.
I've reactivated the three tests that would previously stack overflow by
doubling their stack sizes. The stack overflows only happen in debug
mode, so this is neither a user facing problem nor an actual problem
with our code and this workaround seems better than optimizing our code
for case that the (release) compiler can optimize much better for.
The handling of patch versions will be fixed in a follow-up PR.
Closes#1160Closes#1161
---------
Co-authored-by: Charlie Marsh <charlie.r.marsh@gmail.com>
There are no binary installers for the latests patch versions of cpython
for windows, and building them is hard. As an alternative, we download
python-build-standanlone cpythons and put them into `<project
root>/bin`. On unix, we can symlink `pythonx.y.z` into this directory
and point `PUFFIN_PYTHON_PATH` to it. On windows, all pythons are called
`python.exe` and they don't like being linked. Instead, we add the path
to each directory containing a `python.exe` to `PUFFIN_PYTHON_PATH`,
similar to the regular `PATH`. The python discovery on windows was
extended to respect `PUFFIN_PYTHON_PATH` where needed.
These changes mean that we don't need to (sym)link pythons anymore and
could drop that part to the script.
435 tests run: 389 passed (21 slow), 46 failed, 1 skipped
In the scenario tests, we want to make sure we're actually conforming to
the scenario's expectations, so we now have an extra assertion on
whether resolution failed or succeeded as well as that it includes the
given packages.
Closes#1112Closes#1030
We need more flexible filters than those `inta` offers, and `insta_cmd`
makes it impossible to plug in programmatic filters. At the same time we
use barely any of `insta_cmd`'s features. We can replace the subset we
need in about 50 loc.
Mostly a mechanical refactor to use the `puffin_snapshot!` and
`TestContext` infrastructure in the add, remove, venv and pip uninstall
tests, in preparation for adding programmatic windows testing filters.
The is only one remaining usage of `assert_cmd_snapshot!` now in the
`puffin_snapshot!` macro.
Mostly a mechanical refactor to use the `puffin_snapshot!` and
`TestContext` infrastructure in the pip compile and pip install
scenarios, in preparation for adding programmatic windows testing
filters.
In https://github.com/astral-sh/puffin/pull/1040 we broke the pip
compile scenarios designed to test failure when a required Python
version is not available — resolution succeeded because all of the
Python versions were available in CI. Following #1105 we have the
ability to isolate tests from Python versions available in the system.
Here, we limit the scenarios to only the Python version in the current
environment, restoring our ability to test the error messages.
With https://github.com/zanieb/packse/pull/95, we will be able to
specify scenarios with access to additional system Python versions. This
will allow us to include test coverage where resolution can succeed by
using a version available elsewhere on the system. See #1111 for this
follow-up.
Replaces https://github.com/astral-sh/puffin/pull/1068 and #1070 which
were more complicated than I wanted.
- Introduces a `.python-versions` file which defines the Python versions
needed for development
- Adds a Bash script at `scripts/bootstrap/install` which installs the
required Python versions from `python-build-standalone` to `./bin`
- Checks in a `versions.json` file with metadata about available
versions on each platform and a `fetch-version` Python script derived
from `rye` for updating the versions
- Updates CI to use these Python builds instead of the `setup-python`
action
- Updates to the latest packse scenarios which require Python 3.8+
instead of 3.7+ since we cannot use 3.7 anymore and includes new test
coverage of patch Python version requests
- Adds a `PUFFIN_PYTHON_PATH` variable to prevent lookup of system
Python versions for isolation during development
Tested on Linux (via CI) and macOS (locally) — presumably it will be a
bit more complicated to do proper Windows support.
## Summary
First batch of changes for windows support. Notable changes:
* Fixes all compile errors and added windows specific paths.
* Working venv creation on windows, both from a base interpreter and
from a venv. This requires querying `stdlib` from the sysconfig paths to
find the launcher.
* Basic url/path conversion handling for windows.
* `if cfg!(...)` instead of `#[cfg()]`. This should make it easier to
keep everything compiling across platforms.
## Outlook
Test summary: 402 tests run: 299 passed (15 slow), 103 failed, 1 skipped
There are various reason for the remaining test failure:
* Windows-specific colorama and tzdata dependencies that change the
snapshot slightly. This is by far the biggest batch.
* Some url-path handling issues. I fixed some in the PR, some remain.
* Lack of the latest python patch versions for older pythons on my
machine, since there are no builds for windows and we need to register
them in the registry for them to be picked up for `py --list-paths` (CC
@zanieb RE #1070).
* Lack of entrypoint launchers.
* ... likely more
In windows, `python3.9` and `python3.11` are not in `PATH`. Instead, we
should pass only the python version to `puffin venv -p` in packse
scenarios (#1039).
e.g. for scenarios that test resolution _without_ installation.
This refactors the `update` script to generate scenario test files for
`pip compile` _and_ `pip install`. We don't overlap scenarios to save
time. We only generate `pip compile` test cases for scenarios we cannot
represent with `pip install` e.g. a `--python-version` override.
The _one_ scenario I added happened to reveal a bug in our resolver
where we were incorrectly filtering versions by the installed version
when wheels were available. Per the comment at
https://github.com/astral-sh/puffin/issues/883#issuecomment-1890773112,
we should _only_ need to check for a compatible installed Python version
when using a different _target_ Python version if we need to build a
source distribution.
53bce68400
resolves this by removing the excessive constraints — the correct Python
version incompatibilities are applied elsewhere.
## Summary
This makes the separation clearer between the legacy `pip` API and the
API we'll add in the future for the package manager itself. It also
enables seamless `puffin pip` aliasing for those that want it.
Closes#918.
Uses new metadata added in https://github.com/zanieb/packse/pull/61 to
assert that resolution succeeded or failed _and_ that the installed
package versions match the expected result.
Previously, we just pulled the latest commit from `main` on every
update. This causes problems when you do not intend to update the
scenarios as in #787.
This bumps to the latest `packse` commit without new scenarios.
Adds support for a `PUFFIN_NO_WRAP` environment variable which disables
line wrapping in `miette` output.
We set this variable in the scenario tests to improve the readability of
snapshots.
I contributed the ability to disable line wrapping upstream at
https://github.com/zkat/miette/pull/328