I intend this to become the main form of caching for puffin: You can
make http requests, you tranform the data to what you really need, you
have control over the cache key, and the cache is always json (or
anything else much faster we want to replace it with as long as it's
serde!)
It looks like Cargo, notice the bold green lines at the top (which
appear during the resolution, to indicate Git fetches and source
distribution builds):
<img width="868" alt="Screen Shot 2023-11-06 at 11 28 47 PM"
src="9647a480-7be7-41e9-b1d3-69faefd054ae">
<img width="868" alt="Screen Shot 2023-11-06 at 11 28 51 PM"
src="6bc491aa-5b51-4b37-9ee1-257f1bc1c049">
Closes https://github.com/astral-sh/puffin/issues/287 although we can do
a lot more here.
There are packages such as DTLSSocket 0.1.16 that say
```toml
[build-system]
requires = ["Cython<3", "setuptools", "wheel"]
```
In this case we need to install requires PEP 517 style but then call setup.py in the
legacy way
Part of making home-assistant work
To check to top 1k (current state):
```bash
scripts/resolve/get_pypi_top_8k.sh
cargo run --bin puffin-dev -- resolve-many scripts/resolve/pypi_top_8k_flat.txt --limit 1000
```
Results:
```
Errors: pywin32, geoip2, maxminddb, pypika, dirac
Success: 995, Error: 5
```
pywin32 has no solution for the build environment, 3 have no
`[build-system]` entry in pyproject.toml, `dirac` is missing cmake
Select a compatible wheel for a version, even we already found a source
distribution previously.
If no wheel is found, select the most recent source distribution, not
the oldest compatible one.
This fixes the resolution of `mst.in`, which i added
This is also a lot faster. Unfortunately it copies a lot of code from
the sync cli since the `Printer` is private.
The first commit are some refactorings i made when i thought about how i
could reuse the existing code.
## Summary
This PR enables the proof-of-concept resolver to backtrack by way of
using the `pubgrub-rs` crate.
Rather than using PubGrub as a _framework_ (implementing the
`DependencyProvider` trait, letting PubGrub call us), I've instead
copied over PubGrub's primary solver hook (which is only ~100 lines or
so) and modified it for our purposes (e.g., made it async).
There's a lot to improve here, but it's a start that will let us
understand PubGrub's appropriateness for this problem space. A few
observations:
- In simple cases, the resolver is slower than our current (naive)
resolver. I think it's just that the pipelining isn't as efficient as in
the naive case, where we can just stream package and version fetches
concurrently without any bottlenecks.
- A lot of the code here relates to bridging PubGrub with our own
abstractions -- so we need a `PubGrubPackage`, a `PubGrubVersion`, etc.