There is no guarantee that indexes provide hashes at all or the sha256
we support specifically. [PEP
503](https://peps.python.org/pep-0503/#specification):
> The URL SHOULD include a hash in the form of a URL fragment with the
following syntax: #<hashname>=<hashvalue>, where <hashname> is the
lowercase name of the hash function (such as sha256) and <hashvalue> is
the hex encoded digest.
We instead use the url as input to generate a hash when caching.
## Summary
We always normalize extra names in our requirements (e.g., `cuda12_pip`
to `cuda12-pip`), but we weren't normalizing within PEP 508 markers,
which meant we ended up comparing `cuda12-pip` (normalized) against
`cuda12_pip` (unnormalized).
Closes https://github.com/astral-sh/puffin/issues/911.
Previously, the url on file could either be a relative or an absolute
url, depending on the index, and we would finalize it lazily. Now we
finalize the url when converting `pypi_types::File` to
`distribution_types::File`. This change is required to make the hashes
on `File` optional (https://github.com/astral-sh/puffin/pull/910), which
are currently the only unique field usable for caching.
## Summary
This PR ensures that when the user passes in `--python-version`, we
adjust the _markers_ to match the target version, thus forcing us to
select compatible wheels for the `--python-version`, rather than the
installed version.
## Context
Let's call Python 3.10 the "installed" environment and Python 3.12 the
"target" environment. For each version, we have _both_ a Python version
(to match against `Requires-Python`) and a set of tags (to match against
wheels).
The rules for resolution are as follows...
- For each package, for each version, we try to find the "best
candidate" for resolution and installation.
- We first look for a wheel that's compatible with the _target_
environment. This requires testing against both the `Requires-Python`
and the markers. (We won't have to build or run this code, so the
_installed_ version is irrelevant.) **(This PR corrects _this_ bullet --
previously, we validated against the _installed_ markers, rather than
the target markers.)**
- If we can't find a compatible wheel, we accept any _incompatible_
wheel as long as there's a source distribution. The source distribution
_must_ be compatible with the target environment. (We won't have to
build or run this code, so the _installed_ version is irrelevant.)
- If there are no wheels, then the source distribution must be
compatible with _both_ the installed and target environments, since we
need to build it.
This is all true for the top-level resolution. When we perform a
sub-resolution (when resolving the build dependencies of a source
distribution), we should _only_ use the installed environment, and
ignore the target environment, since we assume that the dependencies
will be the same in both environments once built -- so our goal is
"just" to build the distribution, without concern for which build
dependencies it uses.
Closes https://github.com/astral-sh/puffin/issues/883.
Remove a test case from the `install_editable` that slows it down from
3.6s to 6.5s while providing low test coverage. It also seems to block
other tests sometimes, `cargo nextest run -E "test(editable)"
--all-features` has more consistent and lower runtimes. Surprisingly
this seems to have bigger effect than switching from pyo3 to cffi.
Used test commands:
```
rm -rf scripts/editable-installs/maturin_editable/target/ && time cargo nextest run -E "test(=install_editable)" --all-features
rm -rf scripts/editable-installs/maturin_editable/target/ && time cargo nextest run -E "test(editable)" --all-features
```
Part of #878
Replace the DTLSsocket test with a dummy package that does nothing but
contain the build system specs that we need. This should speed up one of
the slowest tests.
Part of #878
## Summary
Now that `get_or_build_wheel` will often _also_ handle the unzip step,
we need to move our per-target locking (`OnceMap`) up a level.
Previously, it was only applied to the unzip step, to prevent us from
attempting to unzip into the same target concurrently; now, it's applied
at the `get_wheel` level, which includes both downloading and unzipping.
## Test Plan
It seems like none of our existing tests catch this -- perhaps because
they're too "simple"? You need to run into a situation in which you're
doing multiple source distribution builds concurrently (since they'll
all try to download `setuptools`):
```
rm -rf foo && virtualenv --clear .venv && cargo run -p puffin-cli -- pip-compile ./scripts/requirements/pydantic.in --verbose --cache-dir foo
```
Reduces the number of implementation branches handling `Range:full`,
deferring it to `PackageRange`.
Improves some user-facing messages, e.g. saying `all versions of
<package>` instead of `<package>*`.
Changes the member names of the `PackageRangeKind` enum — they were not
very clear.
## Summary
Installs the seed packages you get with `virtualenv`, but opt-in rather
than opt-out.
Closes https://github.com/astral-sh/puffin/issues/852.
## Test Plan
```
❯ ./scripts/benchmarks/venv.sh
+ hyperfine --runs 20 --warmup 3 --prepare 'rm -rf .venv' './target/release/puffin venv' --prepare 'rm -rf .venv' 'virtualenv --without-pip .venv' --prepare 'rm -rf .venv' 'python -m venv --without-pip .venv'
Benchmark 1: ./target/release/puffin venv
Time (mean ± σ): 4.6 ms ± 0.2 ms [User: 2.4 ms, System: 3.6 ms]
Range (min … max): 4.3 ms … 4.9 ms 20 runs
Warning: Command took less than 5 ms to complete. Note that the results might be inaccurate because hyperfine can not calibrate the shell startup time much more precise than this limit. You can try to use the `-N`/`--shell=none` option to disable the shell completely.
Benchmark 2: virtualenv --without-pip .venv
Time (mean ± σ): 73.3 ms ± 0.3 ms [User: 57.4 ms, System: 14.2 ms]
Range (min … max): 72.8 ms … 74.0 ms 20 runs
Benchmark 3: python -m venv --without-pip .venv
Time (mean ± σ): 22.5 ms ± 0.3 ms [User: 17.0 ms, System: 4.9 ms]
Range (min … max): 22.0 ms … 23.2 ms 20 runs
Summary
'./target/release/puffin venv' ran
4.92 ± 0.20 times faster than 'python -m venv --without-pip .venv'
16.00 ± 0.63 times faster than 'virtualenv --without-pip .venv'
+ hyperfine --runs 20 --warmup 3 --prepare 'rm -rf .venv' './target/release/puffin venv --seed' --prepare 'rm -rf .venv' 'virtualenv .venv' --prepare 'rm -rf .venv' 'python -m venv .venv'
Benchmark 1: ./target/release/puffin venv --seed
Time (mean ± σ): 20.2 ms ± 0.4 ms [User: 8.6 ms, System: 15.7 ms]
Range (min … max): 19.7 ms … 21.2 ms 20 runs
Benchmark 2: virtualenv .venv
Time (mean ± σ): 135.1 ms ± 2.4 ms [User: 66.7 ms, System: 65.7 ms]
Range (min … max): 133.2 ms … 142.8 ms 20 runs
Benchmark 3: python -m venv .venv
Time (mean ± σ): 1.656 s ± 0.014 s [User: 1.447 s, System: 0.186 s]
Range (min … max): 1.641 s … 1.697 s 20 runs
Summary
'./target/release/puffin venv --seed' ran
6.67 ± 0.17 times faster than 'virtualenv .venv'
81.79 ± 1.70 times faster than 'python -m venv .venv'
```
## Summary
Our current setup uses the legacy `setup.py`-based builds if a
`pyproject.toml` file isn't present. This matches pip's behavior.
However, `pypa/build` uses PEP 517-based builds in such cases, and it
looks like pip plans to make that the default
(https://github.com/pypa/pip/issues/9175), with the limiting factor
being performance issues related to isolated builds.
This is now the default behavior, but the `--legacy-setup-py` flag
allows users to opt-in to using `setup.py` directly for distributions
that lack a `pyproject.toml`.
## Summary
This PR adds support for `prepare_metadata_for_build_wheel`, which
allows us to determine source distribution metadata without building the
source distribution. This represents an optimization for the resolver,
as we can skip the expensive build phase for build backends that support
it.
For reference, `prepare_metadata_for_build_wheel` seems to be supported
by:
- `hatchling` (as of
[1.0.9](https://hatch.pypa.io/latest/history/hatchling/#hatchling-v1.9.0)).
- `flit`
- `setuptools`
In fact, it seems to work for every backend _except_ those using legacy
`setup.py`.
Closes#599.
Refactoring split out from find links support: Find links files can be
represented as `Dist`, but not really as `File`, they don't have url nor
hashes.
`DistRequiresPython` is somewhat odd as an in between type.
Changes `File::size` from a `usize` to a `u64`.
The motivations are that with tensorflow wheels being 475 MB
(https://pypi.org/project/tensorflow/2.15.0.post1/#files), we're already
only one order of magnitude away and to avoid target dependent failures.
## Summary
If pre-releases are available for a package that we otherwise couldn't
resolve, we now show a hint that includes one of the example versions.
Closes https://github.com/astral-sh/puffin/issues/811.
Instead of trying to fixup _all_ the invalid version specifiers on pypi
and elsewhere, this filters out distributions with invalid
`requires-python` version specifiers that even
`LenientVersionSpecifiers` couldn't parse, as opposed to failing
entirely, which we currently do.
I would be nicer to model through an invalid distribution pubgrub type,
together with e.g. source dists with an unknown extension, so that the
version itself still shows up in the error trace.
At the same time, we reduce the log level for fixups from warning to
trace, as they are not actionable for the user.
Adjusts display of "no versions available" in error messages to be
consistent with other package/range pairings i.e. we usually display
"<package-name><range>".
## Summary
Right now, both the callback _and_ the "We have no compatible wheel"
paths have a lot of repeated code. This PR changes the callback to
_just_ remove all the wheels and handle the download, and the rest of
the method following the callback is responsible for finding and
building any wheels.
## Summary
I'm unable to run `puffin-cli` on `main` as the
`tracing-durations-export` is marked as optional, but the crate actually
depends on it to compile. Further, without `tracing-durations-export`,
there are `Option` types that can't resolve to a concrete type.
This PR fixes compilation with and without the feature.
Noticed these when working on something unrelated. Generally:
- Prefer `entry.file_type()` over `entry.path().is_file()` or similar,
as the former is almost always free on Unix.
- Call `entry.path()` once, since it allocates internally (returns a
`PathBuf`).