These are noisy relative to the effect they have on the user. It seems
better to prioritize hints on poor resolutions. Notably, it seems hard
to make these "not noisy" ref #11091.
Does not include the "lowest" resolution mode, in which lower bounds are
critical.
Build failures are one of the most common user facing failures that
aren't "obivous" errors (such as typos) or resolver errors. Currently,
they show more technical details than being focussed on this being an
error in a subprocess that is either on the side of the package or -
more likely - in the build environment, e.g. the user needs to install a
dev package or their python version is incompatible.
The new error message clearly delineates the part that's important (this
is a build backend problem) from the internals (we called this hook) and
is consistent about which part of the dist building stage failed. We
have to calibrate the exact wording of the error message some more. Most
of the implementation is working around the orphan rule, (this)error
rules and trait rules, so it came out more of a refactoring than
intended.
Example:

This is like #9556, but at the level of all other builds, including the
resolver and installer. Going through PEP 517 to build a package is
slow, so when building a package with the uv build backend, we can call
into the uv build backend directly instead: No temporary virtual env, no
temp venv sync, no python subprocess calls, no uv subprocess calls.
This fast path is gated through preview. Since the uv wheel is not
available at test time, I've manually confirmed the feature by comparing
`uv venv && cargo run pip install . -v --preview --reinstall .` and `uv
venv && cargo run pip install . -v --reinstall .`. When hacking the
preview so that the python uv build backend works without the setting
the direct build also (wheel built with `maturin build --profile
profiling`), we can see the perfomance difference:
```
$ hyperfine --prepare "uv venv" --warmup 3 \
"UV_PREVIEW=1 target/profiling/uv pip install --no-deps --reinstall scripts/packages/built-by-uv --preview" \
"target/profiling/uv pip install --no-deps --reinstall scripts/packages/built-by-uv --find-links target/wheels/"
Benchmark 1: UV_PREVIEW=1 target/profiling/uv pip install --no-deps --reinstall scripts/packages/built-by-uv --preview
Time (mean ± σ): 33.1 ms ± 2.5 ms [User: 25.7 ms, System: 13.0 ms]
Range (min … max): 29.8 ms … 47.3 ms 73 runs
Benchmark 2: target/profiling/uv pip install --no-deps --reinstall scripts/packages/built-by-uv --find-links target/wheels/
Time (mean ± σ): 115.1 ms ± 4.3 ms [User: 54.0 ms, System: 27.0 ms]
Range (min … max): 109.2 ms … 123.8 ms 25 runs
Summary
UV_PREVIEW=1 target/profiling/uv pip install --no-deps --reinstall scripts/packages/built-by-uv --preview ran
3.48 ± 0.29 times faster than target/profiling/uv pip install --no-deps --reinstall scripts/packages/built-by-uv --find-links target/wheels/
```
Do we need a global option to disable the fast path? There is one for
`uv build` because `--force-pep517` moves `uv build` much closer to a
`pip install` from source that a user of a library would experience (See
discussion at #9610), but uv overall doesn't really make guarantees
around the build env of dependencies, so I consider the direct build a
valid option.
Best reviewed commit-by-commit, only the last commit is the actual
implementation, while the preview mode introduction is just a
refactoring touching too many files.
When looking at the build frontend code, I noticed that we always pass
every single field of the shared state to the build dispatch:
```rust
let build_dispatch = BuildDispatch::new(
...
&state.index,
&state.git,
&state.capabilities,
&state.in_flight,
...
);
```
We can abstract this by moving `SharedState` into the build dispatch.
The `BuildDispatch` then has only immutable fields and the
`SharedState`. Since the `SharedState` is all `Arc`s, we can clone it
freely.
## Summary
A lot of good new lints, and most importantly, error stabilizations. I
tried to find a few usages of the new stabilizations, but I'm sure there
are more.
IIUC, this _does_ require bumping our MSRV.
## Summary
This PR should not contain any user-visible changes, but the goal is to
refactor the `Resolution` type to retain a dependency graph. We want to
be able to explain _why_ a given package was excluded on error (see:
https://github.com/astral-sh/uv/issues/8962), which in turn requires
that at install time, we can go back and figure out the dependency
chain. At present, `Resolution` is just a map from package name to
distribution; this PR remodels it as a graph in which each node is a
package, and the edges contain markers plus extras or dependency groups.
## Summary
At present, when we have a Python requirement and we see a wheel, we
verify that the Python requirement is compatible with the wheel. For
source distributions, though, we verify that both the Python requirement
_and_ the currently-installed version are compatible, because we assume
that we'll need to build the source distribution in order to get
metadata. However, we can often extract source distribution metadata
_without_ building (e.g., if there's a `pyproject.toml` with no dynamic
keys).
This PR thus modifies the source distribution handling to defer that
incompatibility ("We couldn't get metadata for this project, because it
has no static metadata and requires a higher Python version to run /
build") until we actually try to build the package. As a result, you can
now resolve source distribution-only packages using Python versions
below their `requires-python`, as long as they include static metadata.
Closes https://github.com/astral-sh/uv/issues/8767.
## Summary
We shouldn't show these in `uv add`, especially when the thing we're
adding is about to have a lower-bound put on it. Now, we only show these
when the user runs `uv lock` or `uv sync`.
## Summary
If you pass a named index via the CLI, you can now reference it as a
named source. This required some surprisingly large refactors, since we
now need to be able to track whether a given index was provided on the
CLI vs. elsewhere (since, e.g., we don't want users to be able to
reference named indexes defined in global configuration).
Closes https://github.com/astral-sh/uv/issues/7899.
As per
https://matklad.github.io/2021/02/27/delete-cargo-integration-tests.html
Before that, there were 91 separate integration tests binary.
(As discussed on Discord — I've done the `uv` crate, there's still a few
more commits coming before this is mergeable, and I want to see how it
performs in CI and locally).
uv will soon support both a build frontend (`uv build`) and a build
backend (`build-system = "uv"`). To avoid the name clash, I'm renaming
the `uv-build` crate to `uv-build-frontend`. In a follow-up PR, I will
add a `uv-build-backend` crate with the build backend implementation.
## Summary
This PR enables users to provide pre-defined static metadata for
dependencies. It's intended for situations in which the user depends on
a package that does _not_ declare static metadata (e.g., a
`setup.py`-only sdist), and that is expensive to build or even cannot be
built on some architectures. For example, you might have a Linux-only
dependency that can't be built on ARM -- but we need to build that
package in order to generate the lockfile. By providing static metadata,
the user can instruct uv to avoid building that package at all.
For example, to override all `anyio` versions:
```toml
[project]
name = "project"
version = "0.1.0"
requires-python = ">=3.12"
dependencies = ["anyio"]
[[tool.uv.dependency-metadata]]
name = "anyio"
requires-dist = ["iniconfig"]
```
Or, to override a specific version:
```toml
[project]
name = "project"
version = "0.1.0"
requires-python = ">=3.12"
dependencies = ["anyio"]
[[tool.uv.dependency-metadata]]
name = "anyio"
version = "3.7.0"
requires-dist = ["iniconfig"]
```
The current implementation uses `Metadata23` directly, so we adhere to
the exact schema expected internally and defined by the standards. Any
entries are treated similarly to overrides, in that we won't even look
for `anyio@3.7.0` metadata in the above example. (In a way, this also
enables #4422, since you could remove a dependency for a specific
package, though it's probably too unwieldy to use in practice, since
you'd need to redefine the _rest_ of the metadata, and do that for every
package that requires the package you want to omit.)
This is under-documented, since I want to get feedback on the core ideas
and names involved.
Closes https://github.com/astral-sh/uv/issues/7393.
## Summary
This PR adds a more flexible cache invalidation abstraction for uv, and
uses that new abstraction to improve support for dynamic metadata.
Specifically, instead of relying solely on a timestamp, we now pass
around a `CacheInfo` struct which (as of now) contains
`Option<Timestamp>` and `Option<Commit>`. The `CacheInfo` is saved in
`dist-info` as `uv_cache.json`, so we can test already-installed
distributions for cache validity (along with testing _cached_
distributions for cache validity).
Beyond the defaults (`pyproject.toml`, `setup.py`, and `setup.cfg`
changes), users can also specify additional cache keys, and it's easy
for us to extend support in the future. Right now, cache keys can either
be instructions to include the current commit (for `setuptools_scm` and
similar) or file paths (for `hatch-requirements-txt` and similar):
```toml
[tool.uv]
cache-keys = [{ file = "requirements.txt" }, { git = true }]
```
This change should be fully backwards compatible.
Closes https://github.com/astral-sh/uv/issues/6964.
Closes https://github.com/astral-sh/uv/issues/6255.
Closes https://github.com/astral-sh/uv/issues/6860.
## Summary
We now track the discovered `IndexCapabilities` for each `IndexUrl`. If
we learn that an index doesn't support range requests, we avoid doing
any batch prefetching.
Closes https://github.com/astral-sh/uv/issues/7221.
## Summary
This is similar to https://github.com/astral-sh/uv/pull/6171 but more
expansive... _Anywhere_ that we test requirements for platform
compatibility, we _need_ to respect the resolver-friendly markers. In
fixing the motivating issue (#6621), I also realized that we had a bunch
of bugs here around `pip install` with `--python-platform` and
`--python-version`, because we always performed our `satisfy` and `Plan`
operations on the interpreter's markers, not the adjusted markers!
Closes https://github.com/astral-sh/uv/issues/6621.
## Summary
Hashes will be validated if present, but aren't required (since, e.g.,
some registries will omit them, as will Git dependencies and such).
Closes https://github.com/astral-sh/uv/issues/5168.
## Summary
This is an alternative to `--require-hashes` which will validate a hash
if it's present, but ignore requirements that omit hashes or are absent
from the lockfile entirely.
So, e.g., transitive dependencies that are missing will _not_ error; nor
will dependencies that are included but lack a hash.
Closes https://github.com/astral-sh/uv/issues/3305.
Whew this is a lot.
The user-facing changes are:
- `uv toolchain` to `uv python` e.g. `uv python find`, `uv python
install`, ...
- `UV_TOOLCHAIN_DIR` to` UV_PYTHON_INSTALL_DIR`
- `<UV_STATE_DIR>/toolchains` to `<UV_STATE_DIR>/python` (with
[automatic
migration](https://github.com/astral-sh/uv/pull/4735/files#r1663029330))
- User-facing messages no longer refer to toolchains, instead using
"Python", "Python versions" or "Python installations"
The internal changes are:
- `uv-toolchain` crate to `uv-python`
- `Toolchain` no longer referenced in type names
- Dropped unused `SystemPython` type (previously replaced)
- Clarified the type names for "managed Python installations"
- (more little things)
## Summary
The `--index-strategy` is linked to the index locations, which we
propagate to source distribution builds; so it makes sense to pass the
`--index-strategy` too.
While I was here, I made `exclude_newer` a required argument so that we
don't forget to set it via the `with_options` builder.
Closes https://github.com/astral-sh/uv/issues/4465.
## Summary
This is what I consider to be the "real" fix for #8072. We now treat
directory and path URLs as separate `ParsedUrl` types and
`RequirementSource` types. This removes a lot of `.is_dir()` forking
within the `ParsedUrl::Path` arms and makes some states impossible
(e.g., you can't have a `.whl` path that is editable). It _also_ fixes
the `direct_url.json` for direct URLs that refer to files. Previously,
we wrote out to these as if they were installed as directories, which is
just wrong.
## Summary
This PR removes the static resolver map:
```rust
static RESOLVED_GIT_REFS: Lazy<Mutex<FxHashMap<RepositoryReference, GitSha>>> =
Lazy::new(Mutex::default);
```
With a `GitResolver` struct that we now pass around on the
`BuildContext`. There should be no behavior changes here; it's purely an
internal refactor with an eye towards making it cleaner for us to
"pre-populate" the list of resolved SHAs.
With the change, we remove the special casing of workspace dependencies
and resolve `tool.uv` for all git and directory distributions. This
gives us support for non-editable workspace dependencies and path
dependencies in other workspaces. It removes a lot of special casing
around workspaces. These changes are the groundwork for supporting
`tool.uv` with dynamic metadata.
The basis for this change is moving `Requirement` from
`distribution-types` to `pypi-types` and the lowering logic from
`uv-requirements` to `uv-distribution`. This changes should be split out
in separate PRs.
I've included an example workspace `albatross-root-workspace2` where
`bird-feeder` depends on `a` from another workspace `ab`. There's a
bunch of failing tests and regressed error messages that still need
fixing. It does fix the audited package count for the workspace tests.
When parsing requirements from any source, directly parse the url parts
(and reject unsupported urls) instead of parsing url parts at a later
stage. This removes a bunch of error branches and concludes the work
parsing url parts once and passing them around everywhere.
Many usages of the assembled `VerbatimUrl` remain, but these can be
removed incrementally.
Please review commit-by-commit.
This is split out from workspaces support, which needs editables in the
bluejay commands. It consists mainly of refactorings:
* Move the `editable` module one level up.
* Introduce a `BuiltEditableMetadata` type for `(LocalEditable,
Metadata23, Requirements)`.
* Add editables to `InstalledPackagesProvider` so we can use
`EmptyInstalledPackages` for them.
## Summary
This PR introduces parallelism to the resolver. Specifically, we can
perform PubGrub resolution on a separate thread, while keeping all I/O
on the tokio thread. We already have the infrastructure set up for this
with the channel and `OnceMap`, which makes this change relatively
simple. The big change needed to make this possible is removing the
lifetimes on some of the types that need to be shared between the
resolver and pubgrub thread.
A related PR, https://github.com/astral-sh/uv/pull/1163, found that
adding `yield_now` calls improved throughput. With optimal scheduling we
might be able to get away with everything on the same thread here.
However, in the ideal pipeline with perfect prefetching, the resolution
and prefetching can run completely in parallel without depending on one
another. While this would be very difficult to achieve, even with our
current prefetching pattern we see a consistent performance improvement
from parallelism.
This does also require reverting a few of the changes from
https://github.com/astral-sh/uv/pull/3413, but not all of them. The
sharing is isolated to the resolver task.
## Test Plan
On smaller tasks performance is mixed with ~2% improvements/regressions
on both sides. However, on medium-large resolution tasks we see the
benefits of parallelism, with improvements anywhere from 10-50%.
```
./scripts/requirements/jupyter.in
Benchmark 1: ./target/profiling/baseline (resolve-warm)
Time (mean ± σ): 29.2 ms ± 1.8 ms [User: 20.3 ms, System: 29.8 ms]
Range (min … max): 26.4 ms … 36.0 ms 91 runs
Benchmark 2: ./target/profiling/parallel (resolve-warm)
Time (mean ± σ): 25.5 ms ± 1.0 ms [User: 19.5 ms, System: 25.5 ms]
Range (min … max): 23.6 ms … 27.8 ms 99 runs
Summary
./target/profiling/parallel (resolve-warm) ran
1.15 ± 0.08 times faster than ./target/profiling/baseline (resolve-warm)
```
```
./scripts/requirements/boto3.in
Benchmark 1: ./target/profiling/baseline (resolve-warm)
Time (mean ± σ): 487.1 ms ± 6.2 ms [User: 464.6 ms, System: 61.6 ms]
Range (min … max): 480.0 ms … 497.3 ms 10 runs
Benchmark 2: ./target/profiling/parallel (resolve-warm)
Time (mean ± σ): 430.8 ms ± 9.3 ms [User: 529.0 ms, System: 77.2 ms]
Range (min … max): 417.1 ms … 442.5 ms 10 runs
Summary
./target/profiling/parallel (resolve-warm) ran
1.13 ± 0.03 times faster than ./target/profiling/baseline (resolve-warm)
```
```
./scripts/requirements/airflow.in
Benchmark 1: ./target/profiling/baseline (resolve-warm)
Time (mean ± σ): 478.1 ms ± 18.8 ms [User: 482.6 ms, System: 205.0 ms]
Range (min … max): 454.7 ms … 508.9 ms 10 runs
Benchmark 2: ./target/profiling/parallel (resolve-warm)
Time (mean ± σ): 308.7 ms ± 11.7 ms [User: 428.5 ms, System: 209.5 ms]
Range (min … max): 287.8 ms … 323.1 ms 10 runs
Summary
./target/profiling/parallel (resolve-warm) ran
1.55 ± 0.08 times faster than ./target/profiling/baseline (resolve-warm)
```
## Summary
Fixes a typo in a comment
## Test Plan
I assume there's no need to test comment changes, other than having a
human check they make sense. That's what this PR is for 😉
This commit touches a lot of code, but the conceptual change here is
pretty simple: make it so we can run the resolver without providing a
`MarkerEnvironment`. This also indicates that the resolver should run in
universal mode. That is, the effect of a missing marker environment is
that all marker expressions that reference the marker environment are
evaluated to `true`. That is, they are ignored. (The only markers we
evaluate in that context are extras, which are the only markers that
aren't dependent on the environment.)
One interesting change here is that a `Resolver` no longer needs an
`Interpreter`. Previously, it had only been using it to construct a
`PythonRequirement`, by filling in the installed version from the
`Interpreter` state. But we now construct a `PythonRequirement`
explicitly since its `target` Python version should no longer be tied to
the `MarkerEnvironment`. (Currently, the marker environment is mutated
such that its `python_full_version` is derived from multiple sources,
including the CLI, which I found a touch confusing.)
The change in behavior can now be observed through the
`--unstable-uv-lock-file` flag. First, without it:
```
$ cat requirements.in
anyio>=4.3.0 ; sys_platform == "linux"
anyio<4 ; sys_platform == "darwin"
$ cargo run -qp uv -- pip compile -p3.10 requirements.in
anyio==4.3.0
exceptiongroup==1.2.1
# via anyio
idna==3.7
# via anyio
sniffio==1.3.1
# via anyio
typing-extensions==4.11.0
# via anyio
```
And now with it:
```
$ cargo run -qp uv -- pip compile -p3.10 requirements.in --unstable-uv-lock-file
x No solution found when resolving dependencies:
`-> Because you require anyio>=4.3.0 and anyio<4, we can conclude that the requirements are unsatisfiable.
```
This is expected at this point because the marker expressions are being
explicitly ignored, *and* there is no forking done yet to account for
the conflict.
## Summary
These aren't intended for production use; instead, I'm just trying to
frame out the overall data flows and code-sharing for these commands. We
now have `uv sync` (sync the environment to match the lockfile, without
refreshing or resolving) and `uv lock` (generate the lockfile). Both
_require_ a virtual environment to exist (something we should change).
`uv sync`, `uv run`, and `uv lock` all share code for the underlying
subroutines (resolution and installation), so the commands themselves
are relatively small (~100 lines) and mostly consist of reading
arguments and such.
`uv lock` and `uv sync` don't actually really work yet, because we have
no way to include the project itself in the lockfile (that's a TODO in
the lockfile implementation).
Closes https://github.com/astral-sh/uv/issues/3432.