After this change, two wheel caches remain: `built-wheels-v0` and
`wheels-v0`, docs screenshots below. Each contains both the wheel
metadata, cache policy and zip or unzipped wheels under the same name.
The zipped/unzipped strategy is as follows: In `pip-compile`, when we
build a wheel, we store it zipped. When `pip-sync` or a source dist
build in `pip-compile` need to install the wheel, we unzip it, remove
the file and replace it with the unzipped wheel.
This removes `WheelCache` and `UrlIndex` in favor of `Cache` plus
`WheelCache`. The non-built wheel cache now considers index urls and the
url for url wheels.
I'm unsure if we need the `Unzipper` type, this could just be a
function.
I move `no_index` into `IndexUrls` and started using `IndexUrl` up to
the clap level.
I left a number of TODOs in the code, namely performing the actual
invalidation of unzipped wheels and making the `InstallPlan` understand
cache invalidation (i.e. uninstall wheels when their remote changed).

This is mostly a mechanical refactor that moves 80% of our code to the
same cache abstraction.
It introduces cache `Cache`, which abstracts away the path of the cache
and the temp dir drop and is passed throughout the codebase. To get a
specific cache bucket, you need to requests your `CacheBucket` from
`Cache`. `CacheBucket` is the centralizes the names of all cache
buckets, moving them away from the string constants spread throughout
the crates.
Specifically for working with the `CachedClient`, there is a
`CacheEntry`. I'm not sure yet if that is a strict improvement over
`cache_dir: PathBuf, cache_file: String`, i may have to rotate that
later.
The interpreter cache moved into `interpreter-v0`.
We can use the `CacheBucket` page to document the cache structure in
each bucket:

**Motivation** Previously, we would install any wheel with the correct
package name and version from the cache, even if it doesn't match the
current python interpreter.
**Summary** The unzipped wheel cache for registries now uses the entire
wheel filename over the name-version (`editables-0.5-py3-none-any.whl`
over `editables-0.5`).
Built wheels are not stored in the `wheels-v0` unzipped wheels cache
anymore. For each source distribution, there can be multiple built
wheels (with different compatibility tags), so i argue that we need a
different cache structure for them (follow up PR).
For `all-kinds.in` with
```bash
rm -rf cache-all-kinds
virtualenv --clear -p 3.12 .venv
cargo run --bin puffin -- pip-sync --cache-dir cache-all-kinds target/all-kinds.txt
```
we get:
**Before**
```
cache-all-kinds/wheels-v0/
├── registry
│ ├── annotated_types-0.6.0
│ ├── asgiref-3.7.2
│ ├── blinker-1.7.0
│ ├── certifi-2023.11.17
│ ├── cffi-1.16.0
│ ├── [...]
│ ├── tzdata-2023.3
│ ├── urllib3-2.1.0
│ └── wheel-0.42.0
└── url
├── 4b8be67c801a7ecb
│ ├── flask
│ └── flask-3.0.0.dist-info
├── 6781bd6440ae72c2
│ ├── werkzeug
│ └── werkzeug-3.0.1.dist-info
└── a67db8ed076e3814
├── pydantic_extra_types
└── pydantic_extra_types-2.1.0.dist-info
48 directories, 0 files
```
**After**
```
cache-all-kinds/wheels-v0/
├── registry
│ ├── annotated_types-0.6.0-py3-none-any.whl
│ ├── asgiref-3.7.2-py3-none-any.whl
│ ├── blinker-1.7.0-py3-none-any.whl
│ ├── certifi-2023.11.17-py3-none-any.whl
│ ├── cffi-1.16.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
│ ├── [...]
│ ├── tzdata-2023.3-py2.py3-none-any.whl
│ ├── urllib3-2.1.0-py3-none-any.whl
│ └── wheel-0.42.0-py3-none-any.whl
└── url
└── 4b8be67c801a7ecb
└── flask-3.0.0-py3-none-any.whl
39 directories, 0 files
```
**Outlook** Part of #477 "Fix wheel caching". Further tasks:
* Replace the `CacheShard` with `WheelMetadataCache` which handles urls
properly.
* Delete unzipped wheels when their remote wheel changed
* Store built wheels next to the `metadata.json` in the source dist
directory; delete built wheels when their source dist changed (different
cache bucket, but it's the same problem of fixing wheel caching) I'll
make stacked PRs for those
## Summary and motivation
For a given source dist, we store the metadata of each wheel built
through it in `built-wheel-metadata-v0/pypi/<source dist
filename>/metadata.json`. During resolution, we check the cache status
of the source dist. If it is fresh, we check `metadata.json` for a
matching wheel. If there is one we use that metadata, if there isn't, we
build one. If the source is stale, we build a wheel and override
`metadata.json` with that single wheel. This PR thereby ties the local
built wheel metadata cache to the freshness of the remote source dist.
This functionality is available through `SourceDistCachedBuilder`.
`puffin_installer::Builder`, `puffin_installer::Downloader` and
`Fetcher` are removed, instead there are now `FetchAndBuild` which calls
into the also new `SourceDistCachedBuilder`. `FetchAndBuild` is the new
main high-level abstraction: It spawns parallel fetching/building, for
wheel metadata it calls into the registry client, for wheel files it
fetches them, for source dists it calls `SourceDistCachedBuilder`. It
handles locks around builds, and newly added also inter-process file
locking for git operations.
Fetching and building source distributions now happens in parallel in
`pip-sync`, i.e. we don't have to wait for the largest wheel to be
downloaded to start building source distributions.
In a follow-up PR, I'll also clear built wheels when they've become
stale.
Another effect is that in a fully cached resolution, we need neither zip
reading nor email parsing.
Closes#473
## Source dist cache structure
Entries by supported sources:
* `<build wheel metadata cache>/pypi/foo-1.0.0.zip/metadata.json`
* `<build wheel metadata
cache>/<sha256(index-url)>/foo-1.0.0.zip/metadata.json`
* `<build wheel metadata
cache>/url/<sha256(url)>/foo-1.0.0.zip/metadata.json`
But the url filename does not need to be a valid source dist filename
(<https://github.com/search?q=path%3A**%2Frequirements.txt+master.zip&type=code>),
so it could also be the following and we have to take any string as
filename:
* `<build wheel metadata
cache>/url/<sha256(url)>/master.zip/metadata.json`
Example:
```text
# git source dist
pydantic-extra-types @ git+https://github.com/pydantic/pydantic-extra-types.git
# pypi source dist
django_allauth==0.51.0
# url source dist
werkzeug @ ff1904eb5e/werkzeug-3.0.1.tar.gz
```
will be stored as
```text
built-wheel-metadata-v0
├── git
│ └── 5c56bc1c58c34c11
│ └── 843b753e9e8cb74e83cac55598719b39a4d5ef1f
│ └── metadata.json
├── pypi
│ └── django-allauth-0.51.0.tar.gz
│ └── metadata.json
└── url
└── 6781bd6440ae72c2
└── werkzeug-3.0.1.tar.gz
└── metadata.json
```
The inside of a `metadata.json`:
```json
{
"data": {
"django_allauth-0.51.0-py3-none-any.whl": {
"metadata-version": "2.1",
"name": "django-allauth",
"version": "0.51.0",
...
}
}
}
```
Preparing for #235, some refactoring to `puffin_interpreter`.
* Added a dedicated error type instead of anyhow
* `InterpreterInfo` -> `Interpreter`
* `detect_virtual_env` now returns an option so it can be chained for
#235
## Summary
This PR unifies the behavior that lived in the resolver's `distribution`
crates with the behaviors that were spread between the various structs
in the installer crate into a single `Fetcher` struct that is intended
to manage all interactions with distributions. Specifically, the
interface of this struct is such that it can access distribution
metadata, download distributions, return those downloads, etc., all with
a common cache.
Overall, this is mostly just DRYing up code that was repeated between
the two crates, and putting it behind a reasonable shared interface.
## Summary
This crate only contains types, and I want to introduce a new crate for
all _operations_ on distributions, so this feels like a more natural
name given we also have `pypi-types`.
## Summary
This is a refactor to address a TODO in the build context whereby we
aren't respecting the resolution options in recursive resolutions. Now,
the options are split out from the resolution _manifest_, and shared
across the build context tree.
This works by filtering out files with a more recent upload time, so if
the index you use does not provide upload times, the results might be
inaccurate. pypi provides upload times for all files. This is, the field
is non-nullable in the warehouse schema, but the simple API PEP does not
know this field.
If you have only pypi dependencies, this means deterministic,
reproducible(!) resolution. We could try doing the same for git repos
but it doesn't seem worth the effort, i'd recommend pinning commits
since git histories are arbitrarily malleable and also if you care about
reproducibility and such you such not use git dependencies but a custom
index.
Timestamps are given either as RFC 3339 timestamps such as
`2006-12-02T02:07:43Z` or as UTC dates in the same format such as
`2006-12-02`. Dates are interpreted as including this day, i.e. until
midnight UTC that day. Date only is required to make this ergonomic and
midnight seems like an ergonomic choice.
In action for `pandas`:
```console
$ target/debug/puffin pip-compile --exclude-newer 2023-11-16 target/pandas.in
Resolved 6 packages in 679ms
# This file was autogenerated by Puffin v0.0.1 via the following command:
# target/debug/puffin pip-compile --exclude-newer 2023-11-16 target/pandas.in
numpy==1.26.2
# via pandas
pandas==2.1.3
python-dateutil==2.8.2
# via pandas
pytz==2023.3.post1
# via pandas
six==1.16.0
# via python-dateutil
tzdata==2023.3
# via pandas
$ target/debug/puffin pip-compile --exclude-newer 2022-11-16 target/pandas.in
Resolved 5 packages in 655ms
# This file was autogenerated by Puffin v0.0.1 via the following command:
# target/debug/puffin pip-compile --exclude-newer 2022-11-16 target/pandas.in
numpy==1.23.4
# via pandas
pandas==1.5.1
python-dateutil==2.8.2
# via pandas
pytz==2022.6
# via pandas
six==1.16.0
# via python-dateutil
$ target/debug/puffin pip-compile --exclude-newer 2021-11-16 target/pandas.in
Resolved 5 packages in 594ms
# This file was autogenerated by Puffin v0.0.1 via the following command:
# target/debug/puffin pip-compile --exclude-newer 2021-11-16 target/pandas.in
numpy==1.21.4
# via pandas
pandas==1.3.4
python-dateutil==2.8.2
# via pandas
pytz==2021.3
# via pandas
six==1.16.0
# via python-dateutil
```
Filter out source dists and wheels whose `requires-python` from the
simple api is incompatible with the current python version.
This change showed an important problem: When we use a fake python
version for resolving, building source distributions breaks down because
we can only build with versions we actually have.
This change became surprisingly big. The tests now require python 3.7 to
be installed, but changing that would mean an even bigger change.
Fixes#388
Before:
```
cargo run --bin puffin-dev -q -- resolve-cli "transformers[accelerate, agents, all, audio, codecarbon, deepspeed, deepspeed-testing, dev, dev-tensorflow, dev-torch, docs, docs_specific, flax, flax-speech, ftfy, integrations, ja, modelcreation, onnx, onnxruntime, optuna, quality, ray, retrieval, sagemaker, sentencepiece, serving, sigopt, sklearn, speech, testing, tf, tf-cpu, tf-speech, timm, tokenizers, torch, torch-speech, torch-vision, torchhub, video, vision]"
puffin-dev failed
Caused by: No solution found when resolving: transformers[accelerate,agents,all,audio,codecarbon,deepspeed,deepspeed-testing,dev,dev-tensorflow,dev-torch,docs,docs-specific,flax,flax-speech,ftfy,integrations,ja,modelcreation,onnx,onnxruntime,optuna,quality,ray,retrieval,sagemaker,sentencepiece,serving,sigopt,sklearn,speech,testing,tf,tf-cpu,tf-speech,timm,tokenizers,torch,torch-speech,torch-vision,torchhub,video,vision]
Caused by: Not a valid package or extra name: ".none". Names must start and end with a letter or digit and may only contain -, _, ., and alphanumeric characters
```
After:
```
cargo run --bin puffin-dev -q -- resolve-cli "transformers[accelerate, agents, all, audio, codecarbon, deepspeed, deepspeed-testing, dev, dev-tensorflow, dev-torch, docs, docs_specific, flax, flax-speech, ftfy, integrations, ja, modelcreation, onnx, onnxruntime, optuna, quality, ray, retrieval, sagemaker, sentencepiece, serving, sigopt, sklearn, speech, testing, tf, tf-cpu, tf-speech, timm, tokenizers, torch, torch-speech, torch-vision, torchhub, video, vision]"
puffin-dev failed
Caused by: No solution found when resolving: transformers[accelerate,agents,all,audio,codecarbon,deepspeed,deepspeed-testing,dev,dev-tensorflow,dev-torch,docs,docs-specific,flax,flax-speech,ftfy,integrations,ja,modelcreation,onnx,onnxruntime,optuna,quality,ray,retrieval,sagemaker,sentencepiece,serving,sigopt,sklearn,speech,testing,tf,tf-cpu,tf-speech,timm,tokenizers,torch,torch-speech,torch-vision,torchhub,video,vision]
Caused by: Couldn't parse metadata in fastapi-0.10.1-py3-none-any.whl (97ac91cb7c/fastapi-0.10.1-py3-none-any.whl)
Caused by: Not a valid package or extra name: ".none". Names must start and end with a letter or digit and may only contain -, _, ., and alphanumeric characters
```
## Summary
This PR refactors our `RemoteDistribution` type such that it now follows
a clear hierarchy that matches the actual variants, and encodes the
differences between source and built distributions:
```rust
pub enum Distribution {
Built(BuiltDistribution),
Source(SourceDistribution),
}
pub enum BuiltDistribution {
Registry(RegistryBuiltDistribution),
DirectUrl(DirectUrlBuiltDistribution),
}
pub enum SourceDistribution {
Registry(RegistrySourceDistribution),
DirectUrl(DirectUrlSourceDistribution),
Git(GitSourceDistribution),
}
/// A built distribution (wheel) that exists in a registry, like `PyPI`.
pub struct RegistryBuiltDistribution {
pub name: PackageName,
pub version: Version,
pub file: File,
}
/// A built distribution (wheel) that exists at an arbitrary URL.
pub struct DirectUrlBuiltDistribution {
pub name: PackageName,
pub url: Url,
}
/// A source distribution that exists in a registry, like `PyPI`.
pub struct RegistrySourceDistribution {
pub name: PackageName,
pub version: Version,
pub file: File,
}
/// A source distribution that exists at an arbitrary URL.
pub struct DirectUrlSourceDistribution {
pub name: PackageName,
pub url: Url,
}
/// A source distribution that exists in a Git repository.
pub struct GitSourceDistribution {
pub name: PackageName,
pub url: Url,
}
```
Most of the PR just stems downstream from this change. There are no
behavioral changes, so I'm largely relying on lint, tests, and the
compiler for correctness.
One of the most common errors i observed are build failures due to
missing header files. On ubuntu, this generally means that you need to
install some `<...>-dev` package that the documentation tells you about,
e.g. [mysqlclient](https://github.com/PyMySQL/mysqlclient#linux) needs
`default-libmysqlclient-dev`, [some psycopg
versions](https://www.psycopg.org/psycopg3/docs/basic/install.html#local-installation)
(i remember that this was always required at some earlier point) require
`libpq-dev` and pygraphviz wants `graphviz-dev`. This is quite common
for many scientific packages (where conda has an advantage because they
can provide those package as a dependency).
The error message can be completely inscrutable if you're just a python
programmer (or user) and not a c programmer (example: pygraphviz):
```
warning: no files found matching '*.png' under directory 'doc'
warning: no files found matching '*.txt' under directory 'doc'
warning: no files found matching '*.css' under directory 'doc'
warning: no previously-included files matching '*~' found anywhere in distribution
warning: no previously-included files matching '*.pyc' found anywhere in distribution
warning: no previously-included files matching '.svn' found anywhere in distribution
no previously-included directories found matching 'doc/build'
pygraphviz/graphviz_wrap.c:3020:10: fatal error: graphviz/cgraph.h: No such file or directory
3020 | #include "graphviz/cgraph.h"
| ^~~~~~~~~~~~~~~~~~~
compilation terminated.
error: command '/usr/bin/gcc' failed with exit code 1
```
The only relevant part is `Fatal error: graphviz/cgraph.h: No such file
or directory`. Why is this file not there and how do i get it to be
there?
This is even harder to spot in pip's output, where it's 11 lines above
the last line:

I've special cased missing headers and made sure that the last line
tells you the important information: We're missing some header, please
check the documentation of {package} {version} for what to install:

Scrolling up:

The difference gets even clearer with a default ubuntu terminal with its
80 columns:

---
Note that the situation is better for a missing compiler, there i get:
```
[...]
warning: no previously-included files matching '*~' found anywhere in distribution
warning: no previously-included files matching '*.pyc' found anywhere in distribution
warning: no previously-included files matching '.svn' found anywhere in distribution
no previously-included directories found matching 'doc/build'
error: command 'gcc' failed: No such file or directory
---
```
Putting the last line into google, the first two results tell me to
`sudo apt-get install gcc`, the third even tells me about `sudo apt
install build-essential`
By default, we will build source distributions for both resolving and
installing, running arbitrary code. `--no-build` adds an option to ban
this and only install from wheels, no source distributions or git builds
allowed. We also don't fetch these and instead report immediately.
I've heard from users for whom this is a requirement, i'm implementing
it now because it's helpful for testing.
I'm thinking about adding a shared `PuffinSharedArgs` struct so we don't
have to repeat each option everywhere.
Closes https://github.com/astral-sh/puffin/issues/356.
The example from the issue now renders as:
```
❯ cargo run --bin puffin-dev -q -- resolve-cli tensorflow-cpu-aws
puffin-dev failed
Caused by: No solution found when resolving build dependencies for source distribution:
Caused by: Because there is no available version for tensorflow-cpu-aws and root depends on tensorflow-cpu-aws, version solving failed.
```
## Summary
This is a first-pass at adding source distribution support to the
installer.
The previous installation flow was:
1. Come up with a plan.
1. Find a distribution (specific file) for every package that we'll need
to download.
1. Download those distributions.
1. Unzip them (since we assumed they were all wheels).
1. Install them into the virtual environment.
Now, Step (3) downloads both wheels and source distributions, and we
insert a step between Steps (3) and (4) to build any source
distributions into zipped wheels.
There are a bunch of TODOs, the most important (IMO) is that we
basically have two implementations of downloading and building, between
the stuff in `puffin_installer` and `puffin_resolver` (namely in
`crates/puffin-resolver/src/distribution`). I didn't attempt to clean
that up here -- it's already a problem, and it's related to the overall
problem we need to solve around unified caching and resource management.
Closes#243.
## Summary
This just enables the `DistributionFinder` (previously known as the
`WheelFinder`) to select source distributions when there are no matching
wheels for a given platform. As a reminder, the `DistributionFinder` is
a simple resolver that doesn't look at any dependencies: it just takes a
set of pinned packages, and finds a distribution to install to satisfy
each requirement.
Part of https://github.com/astral-sh/puffin/issues/214
Adds a `project: Option<PackageName>` to the `Manifest`, `Resolver`, and
`RequirementsSpecification`.
To populate an optional `name` for `PubGubPackage::Root`.
I'll work on removing the version number next.
Should we consider using the parent directory name when a
`pyproject.toml` file is not present?
This PR makes the cache non-optional in most of Puffin, which simplifies
the code, allows us to reuse the cache within a single command (even
with `--no-cache`), and also allows us to use the cache for disk storage
across an invocation.
I left the cache as optional for the `Virtualenv` and `InterpreterInfo`
abstractions, since those are generic enough that it seems nice to have
a non-cached version, but it's kind of arbitrary.
This also allows us to get rid of `PinnedPackage` _and_ to remove some
`Result<...>` types due to needless conversions between
otherwise-identical types.
We now accept a pre-release if (1) all versions are pre-releases, or (2)
there was a pre-release marker in the dependency specifiers for a direct
dependency.
The code is written such that we can support a variety of pre-release
strategies.
Closes https://github.com/astral-sh/puffin/issues/191.
To check to top 1k (current state):
```bash
scripts/resolve/get_pypi_top_8k.sh
cargo run --bin puffin-dev -- resolve-many scripts/resolve/pypi_top_8k_flat.txt --limit 1000
```
Results:
```
Errors: pywin32, geoip2, maxminddb, pypika, dirac
Success: 995, Error: 5
```
pywin32 has no solution for the build environment, 3 have no
`[build-system]` entry in pyproject.toml, `dirac` is missing cmake
Like `pip-compile`, we now respect existing versions from the
`requirements.txt` provided via `--output-file`, unless you pass a
`--upgrade` flag.
Closes#166.
Previously, we had two python interpreter metadata structs, one in
gourgeist and one in puffin. Both would spawn a subprocess to query
overlapping metadata and both would appear in the cli crate, if you
weren't careful you could even have to different base interpreters at
once. This change unifies this to one set of metadata, queried and
cached once.
Another effect of this crate is proper separation of python interpreter
and venv. A base interpreter (such as `/usr/bin/python/`, but also pyenv
and conda installed python) has a set of metadata. A venv has a root and
inherits the base python metadata except for `sys.prefix`, which unlike
`sys.base_prefix`, gets set to the venv root. From the root and the
interpreter info we can compute the paths inside the venv. We can reuse
the interpreter info of the base interpreter when creating a venv
without having to query the newly created `python`.
This is isn't ready, but it can resolve
`meine_stadt_transparent==0.2.14`.
The source distributions are currently being built serially one after
the other, i don't know if that is incidentally due to the resolution
order, because sdist building is blocking or because of something in the
resolver that could be improved.
It's a bit annoying that the thing that was supposed to do http requests
now suddenly also has to a whole download/unpack/resolve/install/build
routine, it messes up the type hierarchy. The much bigger problem though
is avoid recursive crate dependencies, it's the reason for the callback
and for splitting the builder into two crates (badly named atm)