uv/crates/uv-trampoline
Pavel Logan Dikov caf49f845f
Some checks are pending
CI / Determine changes (push) Waiting to run
CI / lint (push) Waiting to run
CI / cargo clippy | ubuntu (push) Blocked by required conditions
CI / cargo clippy | windows (push) Blocked by required conditions
CI / cargo dev generate-all (push) Blocked by required conditions
CI / cargo shear (push) Waiting to run
CI / check system | python3.12 via chocolatey (push) Blocked by required conditions
CI / cargo test | ubuntu (push) Blocked by required conditions
CI / cargo test | macos (push) Blocked by required conditions
CI / cargo test | windows (push) Blocked by required conditions
CI / check windows trampoline | aarch64 (push) Blocked by required conditions
CI / check windows trampoline | i686 (push) Blocked by required conditions
CI / check windows trampoline | x86_64 (push) Blocked by required conditions
CI / test windows trampoline | aarch64 (push) Blocked by required conditions
CI / test windows trampoline | i686 (push) Blocked by required conditions
CI / test windows trampoline | x86_64 (push) Blocked by required conditions
CI / typos (push) Waiting to run
CI / mkdocs (push) Waiting to run
CI / build binary | linux libc (push) Blocked by required conditions
CI / build binary | linux aarch64 (push) Blocked by required conditions
CI / build binary | linux musl (push) Blocked by required conditions
CI / smoke test | linux (push) Blocked by required conditions
CI / build binary | macos aarch64 (push) Blocked by required conditions
CI / build binary | macos x86_64 (push) Blocked by required conditions
CI / build binary | windows x86_64 (push) Blocked by required conditions
CI / build binary | windows aarch64 (push) Blocked by required conditions
CI / build binary | msrv (push) Blocked by required conditions
CI / build binary | freebsd (push) Blocked by required conditions
CI / ecosystem test | pydantic/pydantic-core (push) Blocked by required conditions
CI / ecosystem test | prefecthq/prefect (push) Blocked by required conditions
CI / ecosystem test | pallets/flask (push) Blocked by required conditions
CI / smoke test | linux aarch64 (push) Blocked by required conditions
CI / check system | alpine (push) Blocked by required conditions
CI / smoke test | macos (push) Blocked by required conditions
CI / smoke test | windows x86_64 (push) Blocked by required conditions
CI / smoke test | windows aarch64 (push) Blocked by required conditions
CI / integration test | activate nushell venv (push) Blocked by required conditions
CI / integration test | conda on ubuntu (push) Blocked by required conditions
CI / integration test | deadsnakes python3.9 on ubuntu (push) Blocked by required conditions
CI / integration test | free-threaded on windows (push) Blocked by required conditions
CI / integration test | pypy on windows (push) Blocked by required conditions
CI / integration test | aarch64 windows implicit (push) Blocked by required conditions
CI / integration test | aarch64 windows explicit (push) Blocked by required conditions
CI / integration test | windows python install manager (push) Blocked by required conditions
CI / integration test | pypy on ubuntu (push) Blocked by required conditions
CI / integration test | graalpy on ubuntu (push) Blocked by required conditions
CI / integration test | graalpy on windows (push) Blocked by required conditions
CI / integration test | pyodide on ubuntu (push) Blocked by required conditions
CI / integration test | github actions (push) Blocked by required conditions
CI / integration test | free-threaded python on github actions (push) Blocked by required conditions
CI / integration test | pyenv on wsl x86-64 (push) Blocked by required conditions
CI / integration test | determine publish changes (push) Blocked by required conditions
CI / integration test | registries (push) Blocked by required conditions
CI / integration test | uv publish (push) Blocked by required conditions
CI / integration test | uv_build (push) Blocked by required conditions
CI / check cache | ubuntu (push) Blocked by required conditions
CI / check cache | macos aarch64 (push) Blocked by required conditions
CI / check system | python on debian (push) Blocked by required conditions
CI / check system | python on fedora (push) Blocked by required conditions
CI / check system | python on ubuntu (push) Blocked by required conditions
CI / check system | python on rocky linux 10 (push) Blocked by required conditions
CI / check system | python on rocky linux 8 (push) Blocked by required conditions
CI / check system | python on rocky linux 9 (push) Blocked by required conditions
CI / check system | graalpy on ubuntu (push) Blocked by required conditions
CI / check system | pypy on ubuntu (push) Blocked by required conditions
CI / check system | pyston (push) Blocked by required conditions
CI / check system | windows registry (push) Blocked by required conditions
CI / check system | python on macos aarch64 (push) Blocked by required conditions
CI / check system | homebrew python on macos aarch64 (push) Blocked by required conditions
CI / check system | x86-64 python on macos aarch64 (push) Blocked by required conditions
CI / check system | python on macos x86-64 (push) Blocked by required conditions
CI / check system | python3.10 on windows x86-64 (push) Blocked by required conditions
CI / check system | python3.10 on windows x86 (push) Blocked by required conditions
CI / check system | python3.13 on windows x86-64 (push) Blocked by required conditions
CI / check system | x86-64 python3.13 on windows aarch64 (push) Blocked by required conditions
CI / check system | aarch64 python3.13 on windows aarch64 (push) Blocked by required conditions
CI / check system | python3.9 via pyenv (push) Blocked by required conditions
CI / check system | python3.13 (push) Blocked by required conditions
CI / check system | conda3.11 on macos aarch64 (push) Blocked by required conditions
CI / check system | conda3.8 on macos aarch64 (push) Blocked by required conditions
CI / check system | conda3.11 on linux x86-64 (push) Blocked by required conditions
CI / check system | conda3.8 on linux x86-64 (push) Blocked by required conditions
CI / check system | conda3.11 on windows x86-64 (push) Blocked by required conditions
CI / check system | conda3.8 on windows x86-64 (push) Blocked by required conditions
CI / check system | amazonlinux (push) Blocked by required conditions
CI / check system | embedded python3.10 on windows x86-64 (push) Blocked by required conditions
CI / benchmarks | walltime aarch64 linux (push) Blocked by required conditions
CI / benchmarks | instrumented (push) Blocked by required conditions
zizmor / Run zizmor (push) Waiting to run
Use .rcdata to store trampoline type + path to python binary (#15068)
`.rsrc` is the idiomatic way of storing metadata and non-code resources
in PE
binaries. This should make the resulting binaries more robust as they
are no longer
dependent on the exact location of a certain magic number.

Addresses: #15022

## Test Plan

Existing integration test for `uv-trampoline-builder` + addition to
ensure robustness
to code signing.

---------

Co-authored-by: samypr100 <3933065+samypr100@users.noreply.github.com>
Co-authored-by: Zanie Blue <contact@zanie.dev>
2025-11-09 08:12:40 -06:00
..
.cargo
src Use .rcdata to store trampoline type + path to python binary (#15068) 2025-11-09 08:12:40 -06:00
trampolines Use .rcdata to store trampoline type + path to python binary (#15068) 2025-11-09 08:12:40 -06:00
build.rs Update trampoline to ~1.87 nightly (#15052) 2025-08-06 12:45:04 +00:00
Cargo.lock Update Rust crate windows to v0.61.3 (#14055) 2025-06-16 02:05:34 +00:00
Cargo.toml Use .rcdata to store trampoline type + path to python binary (#15068) 2025-11-09 08:12:40 -06:00
README.md Use .rcdata to store trampoline type + path to python binary (#15068) 2025-11-09 08:12:40 -06:00
rust-toolchain.toml Update Rust toolchain to 1.91 and MSRV to 1.89 (#16531) 2025-10-30 22:34:59 -05:00

Windows trampolines

This is a fork of posy trampolines.

Building

Cross-compiling from Linux

Install cargo xwin. Use your package manager to install LLD and add the rustup targets:

sudo apt install llvm clang lld
cargo install cargo-xwin
rustup toolchain install nightly-2025-06-23
rustup component add rust-src --toolchain nightly-2025-06-23-x86_64-unknown-linux-gnu
rustup target add --toolchain nightly-2025-06-23 i686-pc-windows-msvc
rustup target add --toolchain nightly-2025-06-23 x86_64-pc-windows-msvc
rustup target add --toolchain nightly-2025-06-23 aarch64-pc-windows-msvc

Then, build the trampolines for all supported architectures:

cargo +nightly-2025-06-23 xwin build --xwin-arch x86 --release --target i686-pc-windows-msvc
cargo +nightly-2025-06-23 xwin build --release --target x86_64-pc-windows-msvc
cargo +nightly-2025-06-23 xwin build --release --target aarch64-pc-windows-msvc

Cross-compiling from macOS

Install cargo xwin. Use your package manager to install LLVM and add the rustup targets:

brew install llvm
cargo install cargo-xwin
rustup toolchain install nightly-2025-06-23
rustup component add rust-src --toolchain nightly-2025-06-23-aarch64-apple-darwin
rustup target add --toolchain nightly-2025-06-23 i686-pc-windows-msvc
rustup target add --toolchain nightly-2025-06-23 x86_64-pc-windows-msvc
rustup target add --toolchain nightly-2025-06-23 aarch64-pc-windows-msvc

Then, build the trampolines for all supported architectures:

cargo +nightly-2025-06-23 xwin build --xwin-arch x86 --release --target i686-pc-windows-msvc
cargo +nightly-2025-06-23 xwin build --release --target x86_64-pc-windows-msvc
cargo +nightly-2025-06-23 xwin build --release --target aarch64-pc-windows-msvc

Updating the prebuilt executables

After building the trampolines for all supported architectures:

cp target/aarch64-pc-windows-msvc/release/uv-trampoline-console.exe trampolines/uv-trampoline-aarch64-console.exe
cp target/aarch64-pc-windows-msvc/release/uv-trampoline-gui.exe trampolines/uv-trampoline-aarch64-gui.exe
cp target/x86_64-pc-windows-msvc/release/uv-trampoline-console.exe trampolines/uv-trampoline-x86_64-console.exe
cp target/x86_64-pc-windows-msvc/release/uv-trampoline-gui.exe trampolines/uv-trampoline-x86_64-gui.exe
cp target/i686-pc-windows-msvc/release/uv-trampoline-console.exe trampolines/uv-trampoline-i686-console.exe
cp target/i686-pc-windows-msvc/release/uv-trampoline-gui.exe trampolines/uv-trampoline-i686-gui.exe

Testing the trampolines

To perform a basic smoke test of the trampolines, run the following commands on a Windows machine, from the root of the repository:

cargo clean
cargo run venv
cargo run pip install black
.venv\Scripts\black --version

Background

What is this?

Sometimes you want to run a tool on Windows that's written in Python, like black or mypy or jupyter or whatever. But, Windows does not know how to run Python files! It knows how to run .exe files. So we need to somehow convert our Python file a .exe file.

That's what this does: it's a generic "trampoline" that lets us generate custom .exes for arbitrary Python scripts, and when invoked it bounces to invoking python <the script> instead.

How do you use it?

Basically, this looks up python.exe (for console programs) and invokes python.exe path\to\the\<the .exe>.

It uses PE resources to store/load the information required to do this:

Resource name Contains
RESOURCE_TRAMPOLINE_KIND 1 (script) or 2 (Python launcher)
RESOURCE_PYTHON_PATH Path to python.exe
RESOURCE_SCRIPT_DATA Zip file, containing a Python script called __main__.py

This works because when you run python on the .exe, the zipimport mechanism will see the embedded .zip file, and automagically look inside to find and execute __main__.py. Easy-peasy.

Why does this exist?

I probably could have used Vinay's C++ implementation from distlib, but what's the fun in that? In particular, optimizing for binary size was entertaining (these are ~7x smaller than the distlib, which doesn't matter much, but does a little bit, considering that it gets added to every Python script). There are also some minor advantages, like I think the Rust code is easier to understand (multiple files!) and it's convenient to be able to straightforwardly code the Python-finding logic we want. But mostly it was just an interesting challenge.

This does owe a lot to the distlib implementation though. The overall logic is copied more-or-less directly.

Anything I should know for hacking on this?

In order to minimize binary size, this uses, panic="abort", and carefully avoids using core::fmt. This removes a bunch of runtime overhead: by default, Rust "hello world" on Windows is ~150 KB! So these binaries are ~10x smaller.

Of course the tradeoff is that this is an awkward super-limited environment. No C runtime and limited platform APIs... you don't even panicking support by default. To work around this:

  • We use windows to access Win32 APIs directly. Who needs a C runtime? Though uh, this does mean that literally all of our code is unsafe. Sorry!

  • diagnostics.rs uses ufmt and some cute Windows tricks to get a convenient version of eprintln! that works without core::fmt, and automatically prints to either the console if available or pops up a message box if not.

  • All the meat is in bounce.rs.

Miscellaneous tips:

  • cargo-bloat is a useful tool for checking what code is ending up in the final binary and how much space it's taking. (It makes it very obvious whether you've pulled in core::fmt!)

  • Lots of Rust built-in panicking checks will pull in core::fmt, e.g., if you ever use .unwrap() then suddenly our binaries double in size, because the if foo.is_none() { panic!(...) } that's hidden inside .unwrap() will invoke core::fmt, even if the unwrap will actually never fail. .unwrap_unchecked() avoids this. Similar for slice[idx] vs slice.get_unchecked(idx).

How do you build this stupid thing?

Building this can be frustrating, because the low-level compiler/runtime machinery have a bunch of implicit assumptions about the environment they'll run in, and the facilities it provides for things like memcpy, unwinding, etc. So we need to replace the bits that we actually need, and which bits we need can change depending on stuff like optimization options. For example: we use panic="abort", so we don't actually need unwinding support, but at lower optimization levels the compiler might not realize that, and still emit references to the unwinding helper__CxxFrameHandler3. And then the linker blows up because that symbol doesn't exist.

cargo build --release --target i686-pc-windows-msvc
cargo build --release --target x86_64-pc-windows-msvc
cargo build --release --target aarch64-pc-windows-msvc