uv/crates/uv-resolver/src/resolver/mod.rs
chisato accfb48876
Fix uv sync --no-sources not switching from editable to registry installations (#15234)
## Summary

Fixes issue #15190 where `uv sync --no-sources` fails to switch from
editable to registry package installations. The problem occurred because
the installer's satisfaction check didn't consider the `--no-sources`
flag when determining if an existing editable installation was
compatible with a registry requirement.

## Solution

Modified `RequirementSatisfaction::check()` to reject non-registry
installations when `SourceStrategy::Disabled` and the requirement is
from registry. Added `SourceStrategy` parameter threading through the
entire call chain from commands to the satisfaction check to ensure
consistent behavior between `uv sync --no-sources` and `uv pip install
--no-sources`.

---------

Co-authored-by: Charlie Marsh <charlie.r.marsh@gmail.com>
2025-09-17 06:35:32 -05:00

4028 lines
166 KiB
Rust

//! Given a set of requirements, find a set of compatible packages.
use std::borrow::Cow;
use std::cmp::Ordering;
use std::collections::{BTreeMap, BTreeSet, VecDeque};
use std::fmt::{Display, Formatter, Write};
use std::ops::Bound;
use std::sync::Arc;
use std::time::Instant;
use std::{iter, slice, thread};
use dashmap::DashMap;
use either::Either;
use futures::{FutureExt, StreamExt};
use itertools::Itertools;
use pubgrub::{Id, IncompId, Incompatibility, Kind, Range, Ranges, State};
use rustc_hash::{FxHashMap, FxHashSet};
use tokio::sync::mpsc::{self, Receiver, Sender};
use tokio::sync::oneshot;
use tokio_stream::wrappers::ReceiverStream;
use tracing::{Level, debug, info, instrument, trace, warn};
use uv_configuration::{Constraints, Overrides, SourceStrategy};
use uv_distribution::{ArchiveMetadata, DistributionDatabase};
use uv_distribution_types::{
BuiltDist, CompatibleDist, DerivationChain, Dist, DistErrorKind, DistributionMetadata,
IncompatibleDist, IncompatibleSource, IncompatibleWheel, IndexCapabilities, IndexLocations,
IndexMetadata, IndexUrl, InstalledDist, Name, PythonRequirementKind, RemoteSource, Requirement,
ResolvedDist, ResolvedDistRef, SourceDist, VersionOrUrlRef,
};
use uv_git::GitResolver;
use uv_normalize::{ExtraName, GroupName, PackageName};
use uv_pep440::{MIN_VERSION, Version, VersionSpecifiers, release_specifiers_to_ranges};
use uv_pep508::{
MarkerEnvironment, MarkerExpression, MarkerOperator, MarkerTree, MarkerValueString,
};
use uv_platform_tags::Tags;
use uv_pypi_types::{ConflictItem, ConflictItemRef, ConflictKindRef, Conflicts, VerbatimParsedUrl};
use uv_torch::TorchStrategy;
use uv_types::{BuildContext, HashStrategy, InstalledPackagesProvider};
use uv_warnings::warn_user_once;
use crate::candidate_selector::{Candidate, CandidateDist, CandidateSelector};
use crate::dependency_provider::UvDependencyProvider;
use crate::error::{NoSolutionError, ResolveError};
use crate::fork_indexes::ForkIndexes;
use crate::fork_strategy::ForkStrategy;
use crate::fork_urls::ForkUrls;
use crate::manifest::Manifest;
use crate::pins::FilePins;
use crate::preferences::{PreferenceSource, Preferences};
use crate::pubgrub::{
PubGrubDependency, PubGrubDistribution, PubGrubPackage, PubGrubPackageInner, PubGrubPriorities,
PubGrubPython,
};
use crate::python_requirement::PythonRequirement;
use crate::resolution::ResolverOutput;
use crate::resolution_mode::ResolutionStrategy;
pub(crate) use crate::resolver::availability::{
ResolverVersion, UnavailableErrorChain, UnavailablePackage, UnavailableReason,
UnavailableVersion,
};
use crate::resolver::batch_prefetch::BatchPrefetcher;
pub use crate::resolver::derivation::DerivationChainBuilder;
pub use crate::resolver::environment::ResolverEnvironment;
use crate::resolver::environment::{
ForkingPossibility, fork_version_by_marker, fork_version_by_python_requirement,
};
pub(crate) use crate::resolver::fork_map::{ForkMap, ForkSet};
pub use crate::resolver::index::InMemoryIndex;
use crate::resolver::indexes::Indexes;
pub use crate::resolver::provider::{
DefaultResolverProvider, MetadataResponse, PackageVersionsResult, ResolverProvider,
VersionsResponse, WheelMetadataResult,
};
pub use crate::resolver::reporter::{BuildId, Reporter};
use crate::resolver::system::SystemDependency;
pub(crate) use crate::resolver::urls::Urls;
use crate::universal_marker::{ConflictMarker, UniversalMarker};
use crate::yanks::AllowedYanks;
use crate::{
DependencyMode, ExcludeNewer, Exclusions, FlatIndex, Options, ResolutionMode, VersionMap,
marker,
};
pub(crate) use provider::MetadataUnavailable;
mod availability;
mod batch_prefetch;
mod derivation;
mod environment;
mod fork_map;
mod index;
mod indexes;
mod provider;
mod reporter;
mod system;
mod urls;
/// The number of conflicts a package may accumulate before we re-prioritize and backtrack.
const CONFLICT_THRESHOLD: usize = 5;
pub struct Resolver<Provider: ResolverProvider, InstalledPackages: InstalledPackagesProvider> {
state: ResolverState<InstalledPackages>,
provider: Provider,
}
/// State that is shared between the prefetcher and the PubGrub solver during
/// resolution, across all forks.
struct ResolverState<InstalledPackages: InstalledPackagesProvider> {
project: Option<PackageName>,
requirements: Vec<Requirement>,
constraints: Constraints,
overrides: Overrides,
preferences: Preferences,
git: GitResolver,
capabilities: IndexCapabilities,
locations: IndexLocations,
exclusions: Exclusions,
urls: Urls,
indexes: Indexes,
dependency_mode: DependencyMode,
hasher: HashStrategy,
env: ResolverEnvironment,
// The environment of the current Python interpreter.
current_environment: MarkerEnvironment,
tags: Option<Tags>,
python_requirement: PythonRequirement,
conflicts: Conflicts,
workspace_members: BTreeSet<PackageName>,
selector: CandidateSelector,
index: InMemoryIndex,
installed_packages: InstalledPackages,
/// Incompatibilities for packages that are entirely unavailable.
unavailable_packages: DashMap<PackageName, UnavailablePackage>,
/// Incompatibilities for packages that are unavailable at specific versions.
incomplete_packages: DashMap<PackageName, DashMap<Version, MetadataUnavailable>>,
/// The options that were used to configure this resolver.
options: Options,
/// The reporter to use for this resolver.
reporter: Option<Arc<dyn Reporter>>,
}
impl<'a, Context: BuildContext, InstalledPackages: InstalledPackagesProvider>
Resolver<DefaultResolverProvider<'a, Context>, InstalledPackages>
{
/// Initialize a new resolver using the default backend doing real requests.
///
/// Reads the flat index entries.
///
/// # Marker environment
///
/// The marker environment is optional.
///
/// When a marker environment is not provided, the resolver is said to be
/// in "universal" mode. When in universal mode, the resolution produced
/// may contain multiple versions of the same package. And thus, in order
/// to use the resulting resolution, there must be a "universal"-aware
/// reader of the resolution that knows to exclude distributions that can't
/// be used in the current environment.
///
/// When a marker environment is provided, the resolver is in
/// "non-universal" mode, which corresponds to standard `pip` behavior that
/// works only for a specific marker environment.
pub fn new(
manifest: Manifest,
options: Options,
python_requirement: &'a PythonRequirement,
env: ResolverEnvironment,
current_environment: &MarkerEnvironment,
conflicts: Conflicts,
tags: Option<&'a Tags>,
flat_index: &'a FlatIndex,
index: &'a InMemoryIndex,
hasher: &'a HashStrategy,
build_context: &'a Context,
installed_packages: InstalledPackages,
database: DistributionDatabase<'a, Context>,
) -> Result<Self, ResolveError> {
let provider = DefaultResolverProvider::new(
database,
flat_index,
tags,
python_requirement.target(),
AllowedYanks::from_manifest(&manifest, &env, options.dependency_mode),
hasher,
options.exclude_newer.clone(),
build_context.build_options(),
build_context.capabilities(),
);
Self::new_custom_io(
manifest,
options,
hasher,
env,
current_environment,
tags.cloned(),
python_requirement,
conflicts,
index,
build_context.git(),
build_context.capabilities(),
build_context.locations(),
build_context.sources(),
provider,
installed_packages,
)
}
}
impl<Provider: ResolverProvider, InstalledPackages: InstalledPackagesProvider>
Resolver<Provider, InstalledPackages>
{
/// Initialize a new resolver using a user provided backend.
pub fn new_custom_io(
manifest: Manifest,
options: Options,
hasher: &HashStrategy,
env: ResolverEnvironment,
current_environment: &MarkerEnvironment,
tags: Option<Tags>,
python_requirement: &PythonRequirement,
conflicts: Conflicts,
index: &InMemoryIndex,
git: &GitResolver,
capabilities: &IndexCapabilities,
locations: &IndexLocations,
source_strategy: SourceStrategy,
provider: Provider,
installed_packages: InstalledPackages,
) -> Result<Self, ResolveError> {
let state = ResolverState {
index: index.clone(),
git: git.clone(),
capabilities: capabilities.clone(),
selector: CandidateSelector::for_resolution(&options, &manifest, &env, source_strategy),
dependency_mode: options.dependency_mode,
urls: Urls::from_manifest(&manifest, &env, git, options.dependency_mode),
indexes: Indexes::from_manifest(&manifest, &env, options.dependency_mode),
project: manifest.project,
workspace_members: manifest.workspace_members,
requirements: manifest.requirements,
constraints: manifest.constraints,
overrides: manifest.overrides,
preferences: manifest.preferences,
exclusions: manifest.exclusions,
hasher: hasher.clone(),
locations: locations.clone(),
env,
current_environment: current_environment.clone(),
tags,
python_requirement: python_requirement.clone(),
conflicts,
installed_packages,
unavailable_packages: DashMap::default(),
incomplete_packages: DashMap::default(),
options,
reporter: None,
};
Ok(Self { state, provider })
}
/// Set the [`Reporter`] to use for this installer.
#[must_use]
pub fn with_reporter(self, reporter: Arc<dyn Reporter>) -> Self {
Self {
state: ResolverState {
reporter: Some(reporter.clone()),
..self.state
},
provider: self
.provider
.with_reporter(reporter.into_distribution_reporter()),
}
}
/// Resolve a set of requirements into a set of pinned versions.
pub async fn resolve(self) -> Result<ResolverOutput, ResolveError> {
let state = Arc::new(self.state);
let provider = Arc::new(self.provider);
// A channel to fetch package metadata (e.g., given `flask`, fetch all versions) and version
// metadata (e.g., given `flask==1.0.0`, fetch the metadata for that version).
// Channel size is set large to accommodate batch prefetching.
let (request_sink, request_stream) = mpsc::channel(300);
// Run the fetcher.
let requests_fut = state.clone().fetch(provider.clone(), request_stream).fuse();
// Spawn the PubGrub solver on a dedicated thread.
let solver = state.clone();
let (tx, rx) = oneshot::channel();
thread::Builder::new()
.name("uv-resolver".into())
.spawn(move || {
let result = solver.solve(&request_sink);
// This may fail if the main thread returned early due to an error.
let _ = tx.send(result);
})
.unwrap();
let resolve_fut = async move { rx.await.map_err(|_| ResolveError::ChannelClosed) };
// Wait for both to complete.
let ((), resolution) = tokio::try_join!(requests_fut, resolve_fut)?;
state.on_complete();
resolution
}
}
impl<InstalledPackages: InstalledPackagesProvider> ResolverState<InstalledPackages> {
#[instrument(skip_all)]
fn solve(
self: Arc<Self>,
request_sink: &Sender<Request>,
) -> Result<ResolverOutput, ResolveError> {
debug!(
"Solving with installed Python version: {}",
self.python_requirement.exact()
);
debug!(
"Solving with target Python version: {}",
self.python_requirement.target()
);
let mut visited = FxHashSet::default();
let root = PubGrubPackage::from(PubGrubPackageInner::Root(self.project.clone()));
let pubgrub = State::init(root.clone(), MIN_VERSION.clone());
let prefetcher = BatchPrefetcher::new(
self.capabilities.clone(),
self.index.clone(),
request_sink.clone(),
);
let state = ForkState::new(
pubgrub,
self.env.clone(),
self.python_requirement.clone(),
prefetcher,
);
let mut preferences = self.preferences.clone();
let mut forked_states = self.env.initial_forked_states(state)?;
let mut resolutions = vec![];
'FORK: while let Some(mut state) = forked_states.pop() {
if let Some(split) = state.env.end_user_fork_display() {
let requires_python = state.python_requirement.target();
debug!("Solving {split} (requires-python: {requires_python:?})");
}
let start = Instant::now();
loop {
let highest_priority_pkg =
if let Some(initial) = state.initial_id.take() {
// If we just forked based on `requires-python`, we can skip unit
// propagation, since we already propagated the package that initiated
// the fork.
initial
} else {
// Run unit propagation.
let result = state.pubgrub.unit_propagation(state.next);
match result {
Err(err) => {
// If unit propagation failed, there is no solution.
return Err(self.convert_no_solution_err(
err,
state.fork_urls,
state.fork_indexes,
state.env,
self.current_environment.clone(),
Some(&self.options.exclude_newer),
&visited,
));
}
Ok(conflicts) => {
for (affected, incompatibility) in conflicts {
// Conflict tracking: If there was a conflict, track affected and
// culprit for all root cause incompatibilities
state.record_conflict(affected, None, incompatibility);
}
}
}
// Pre-visit all candidate packages, to allow metadata to be fetched in parallel.
if self.dependency_mode.is_transitive() {
Self::pre_visit(
state
.pubgrub
.partial_solution
.prioritized_packages()
.map(|(id, range)| (&state.pubgrub.package_store[id], range)),
&self.urls,
&self.indexes,
&state.python_requirement,
request_sink,
)?;
}
Self::reprioritize_conflicts(&mut state);
trace!(
"Assigned packages: {}",
state
.pubgrub
.partial_solution
.extract_solution()
.filter(|(p, _)| !state.pubgrub.package_store[*p].is_proxy())
.map(|(p, v)| format!("{}=={}", state.pubgrub.package_store[p], v))
.join(", ")
);
// Choose a package.
// We aren't allowed to use the term intersection as it would extend the
// mutable borrow of `state`.
let Some((highest_priority_pkg, _)) =
state.pubgrub.partial_solution.pick_highest_priority_pkg(
|id, _range| state.priorities.get(&state.pubgrub.package_store[id]),
)
else {
// All packages have been assigned, the fork has been successfully resolved
if tracing::enabled!(Level::DEBUG) {
state.prefetcher.log_tried_versions();
}
debug!(
"{} resolution took {:.3}s",
state.env,
start.elapsed().as_secs_f32()
);
let resolution = state.into_resolution();
// Walk over the selected versions, and mark them as preferences. We have to
// add forks back as to not override the preferences from the lockfile for
// the next fork
//
// If we're using a resolution mode that varies based on whether a dependency is
// direct or transitive, skip preferences, as we risk adding a preference from
// one fork (in which it's a transitive dependency) to another fork (in which
// it's direct).
if matches!(
self.options.resolution_mode,
ResolutionMode::Lowest | ResolutionMode::Highest
) {
for (package, version) in &resolution.nodes {
preferences.insert(
package.name.clone(),
package.index.clone(),
resolution
.env
.try_universal_markers()
.unwrap_or(UniversalMarker::TRUE),
version.clone(),
PreferenceSource::Resolver,
);
}
}
resolutions.push(resolution);
continue 'FORK;
};
trace!(
"Chose package for decision: {}. remaining choices: {}",
state.pubgrub.package_store[highest_priority_pkg],
state
.pubgrub
.partial_solution
.undecided_packages()
.filter(|(p, _)| !state.pubgrub.package_store[**p].is_proxy())
.map(|(p, _)| state.pubgrub.package_store[*p].to_string())
.join(", ")
);
highest_priority_pkg
};
state.next = highest_priority_pkg;
// TODO(charlie): Remove as many usages of `next_package` as we can.
let next_id = state.next;
let next_package = &state.pubgrub.package_store[state.next];
let url = next_package
.name()
.and_then(|name| state.fork_urls.get(name));
let index = next_package
.name()
.and_then(|name| state.fork_indexes.get(name));
// Consider:
// ```toml
// dependencies = [
// "iniconfig == 1.1.1 ; python_version < '3.12'",
// "iniconfig @ https://files.pythonhosted.org/packages/ef/a6/62565a6e1cf69e10f5727360368e451d4b7f58beeac6173dc9db836a5b46/iniconfig-2.0.0-py3-none-any.whl ; python_version >= '3.12'",
// ]
// ```
// In the `python_version < '3.12'` case, we haven't pre-visited `iniconfig` yet,
// since we weren't sure whether it might also be a URL requirement when
// transforming the requirements. For that case, we do another request here
// (idempotent due to caching).
self.request_package(next_package, url, index, request_sink)?;
let version = if let Some(version) = state.initial_version.take() {
// If we just forked based on platform support, we can skip version selection,
// since the fork operation itself already selected the appropriate version for
// the platform.
version
} else {
let term_intersection = state
.pubgrub
.partial_solution
.term_intersection_for_package(next_id)
.expect("a package was chosen but we don't have a term");
let decision = self.choose_version(
next_package,
next_id,
index.map(IndexMetadata::url),
term_intersection.unwrap_positive(),
&mut state.pins,
&preferences,
&state.fork_urls,
&state.env,
&state.python_requirement,
&state.pubgrub,
&mut visited,
request_sink,
)?;
// Pick the next compatible version.
let Some(version) = decision else {
debug!("No compatible version found for: {next_package}");
let term_intersection = state
.pubgrub
.partial_solution
.term_intersection_for_package(next_id)
.expect("a package was chosen but we don't have a term");
if let PubGrubPackageInner::Package { name, .. } = &**next_package {
// Check if the decision was due to the package being unavailable
if let Some(entry) = self.unavailable_packages.get(name) {
state
.pubgrub
.add_incompatibility(Incompatibility::custom_term(
next_id,
term_intersection.clone(),
UnavailableReason::Package(entry.clone()),
));
continue;
}
}
state
.pubgrub
.add_incompatibility(Incompatibility::no_versions(
next_id,
term_intersection.clone(),
));
continue;
};
let version = match version {
ResolverVersion::Unforked(version) => version,
ResolverVersion::Forked(forks) => {
forked_states.extend(self.version_forks_to_fork_states(state, forks));
continue 'FORK;
}
ResolverVersion::Unavailable(version, reason) => {
state.add_unavailable_version(version, reason);
continue;
}
};
// Only consider registry packages for prefetch.
if url.is_none() {
state.prefetcher.prefetch_batches(
next_package,
index,
&version,
term_intersection.unwrap_positive(),
state
.pubgrub
.partial_solution
.unchanging_term_for_package(next_id),
&state.python_requirement,
&self.selector,
&state.env,
)?;
}
version
};
state.prefetcher.version_tried(next_package, &version);
self.on_progress(next_package, &version);
if !state
.added_dependencies
.entry(next_id)
.or_default()
.insert(version.clone())
{
// `dep_incompats` are already in `incompatibilities` so we know there are not satisfied
// terms and can add the decision directly.
state
.pubgrub
.partial_solution
.add_decision(next_id, version);
continue;
}
// Retrieve that package dependencies.
let forked_deps = self.get_dependencies_forking(
next_id,
next_package,
&version,
&state.pins,
&state.fork_urls,
&state.env,
&state.python_requirement,
&state.pubgrub,
)?;
match forked_deps {
ForkedDependencies::Unavailable(reason) => {
// Then here, if we get a reason that we consider unrecoverable, we should
// show the derivation chain.
state
.pubgrub
.add_incompatibility(Incompatibility::custom_version(
next_id,
version.clone(),
UnavailableReason::Version(reason),
));
}
ForkedDependencies::Unforked(dependencies) => {
// Enrich the state with any URLs, etc.
state
.visit_package_version_dependencies(
next_id,
&version,
&self.urls,
&self.indexes,
&dependencies,
&self.git,
&self.workspace_members,
self.selector.resolution_strategy(),
)
.map_err(|err| {
enrich_dependency_error(err, next_id, &version, &state.pubgrub)
})?;
// Emit a request to fetch the metadata for each registry package.
self.visit_dependencies(&dependencies, &state, request_sink)
.map_err(|err| {
enrich_dependency_error(err, next_id, &version, &state.pubgrub)
})?;
// Add the dependencies to the state.
state.add_package_version_dependencies(next_id, &version, dependencies);
}
ForkedDependencies::Forked {
mut forks,
diverging_packages,
} => {
debug!(
"Pre-fork {} took {:.3}s",
state.env,
start.elapsed().as_secs_f32()
);
// Prioritize the forks.
match (self.options.fork_strategy, self.options.resolution_mode) {
(ForkStrategy::Fewest, _) | (_, ResolutionMode::Lowest) => {
// Prefer solving forks with lower Python bounds, since they're more
// likely to produce solutions that work for forks with higher
// Python bounds (whereas the inverse is not true).
forks.sort_by(|a, b| {
a.cmp_requires_python(b)
.reverse()
.then_with(|| a.cmp_upper_bounds(b))
});
}
(ForkStrategy::RequiresPython, _) => {
// Otherwise, prefer solving forks with higher Python bounds, since
// we want to prioritize choosing the latest-compatible package
// version for each Python version.
forks.sort_by(|a, b| {
a.cmp_requires_python(b).then_with(|| a.cmp_upper_bounds(b))
});
}
}
for new_fork_state in self.forks_to_fork_states(
state,
&version,
forks,
request_sink,
&diverging_packages,
) {
forked_states.push(new_fork_state?);
}
continue 'FORK;
}
}
}
}
if resolutions.len() > 1 {
info!(
"Solved your requirements for {} environments",
resolutions.len()
);
}
if tracing::enabled!(Level::DEBUG) {
for resolution in &resolutions {
if let Some(env) = resolution.env.end_user_fork_display() {
let packages: FxHashSet<_> = resolution
.nodes
.keys()
.map(|package| &package.name)
.collect();
debug!(
"Distinct solution for {env} with {} package(s)",
packages.len()
);
}
}
}
for resolution in &resolutions {
Self::trace_resolution(resolution);
}
ResolverOutput::from_state(
&resolutions,
&self.requirements,
&self.constraints,
&self.overrides,
&self.preferences,
&self.index,
&self.git,
&self.python_requirement,
&self.conflicts,
self.selector.resolution_strategy(),
self.options.clone(),
)
}
/// Change the priority of often conflicting packages and backtrack.
///
/// To be called after unit propagation.
fn reprioritize_conflicts(state: &mut ForkState) {
for package in state.conflict_tracker.prioritize.drain(..) {
let changed = state
.priorities
.mark_conflict_early(&state.pubgrub.package_store[package]);
if changed {
debug!(
"Package {} has too many conflicts (affected), prioritizing",
&state.pubgrub.package_store[package]
);
} else {
debug!(
"Package {} has too many conflicts (affected), already {:?}",
state.pubgrub.package_store[package],
state.priorities.get(&state.pubgrub.package_store[package])
);
}
}
for package in state.conflict_tracker.deprioritize.drain(..) {
let changed = state
.priorities
.mark_conflict_late(&state.pubgrub.package_store[package]);
if changed {
debug!(
"Package {} has too many conflicts (culprit), deprioritizing and backtracking",
state.pubgrub.package_store[package],
);
let backtrack_level = state.pubgrub.backtrack_package(package);
if let Some(backtrack_level) = backtrack_level {
debug!("Backtracked {backtrack_level} decisions");
} else {
debug!(
"Package {} is not decided, cannot backtrack",
state.pubgrub.package_store[package]
);
}
} else {
debug!(
"Package {} has too many conflicts (culprit), already {:?}",
state.pubgrub.package_store[package],
state.priorities.get(&state.pubgrub.package_store[package])
);
}
}
}
/// When trace level logging is enabled, we dump the final
/// set of resolutions, including markers, to help with
/// debugging. Namely, this tells use precisely the state
/// emitted by the resolver before going off to construct a
/// resolution graph.
fn trace_resolution(combined: &Resolution) {
if !tracing::enabled!(Level::TRACE) {
return;
}
trace!("Resolution: {:?}", combined.env);
for edge in &combined.edges {
trace!(
"Resolution edge: {} -> {}",
edge.from
.as_ref()
.map(PackageName::as_str)
.unwrap_or("ROOT"),
edge.to,
);
// The unwraps below are OK because `write`ing to
// a String can never fail (except for OOM).
let mut msg = String::new();
write!(msg, "{}", edge.from_version).unwrap();
if let Some(ref extra) = edge.from_extra {
write!(msg, " (extra: {extra})").unwrap();
}
if let Some(ref dev) = edge.from_group {
write!(msg, " (group: {dev})").unwrap();
}
write!(msg, " -> ").unwrap();
write!(msg, "{}", edge.to_version).unwrap();
if let Some(ref extra) = edge.to_extra {
write!(msg, " (extra: {extra})").unwrap();
}
if let Some(ref dev) = edge.to_group {
write!(msg, " (group: {dev})").unwrap();
}
if let Some(marker) = edge.marker.contents() {
write!(msg, " ; {marker}").unwrap();
}
trace!("Resolution edge: {msg}");
}
}
/// Convert the dependency [`Fork`]s into [`ForkState`]s.
fn forks_to_fork_states<'a>(
&'a self,
current_state: ForkState,
version: &'a Version,
forks: Vec<Fork>,
request_sink: &'a Sender<Request>,
diverging_packages: &'a [PackageName],
) -> impl Iterator<Item = Result<ForkState, ResolveError>> + 'a {
debug!(
"Splitting resolution on {}=={} over {} into {} resolution{} with separate markers",
current_state.pubgrub.package_store[current_state.next],
version,
diverging_packages
.iter()
.map(ToString::to_string)
.join(", "),
forks.len(),
if forks.len() == 1 { "" } else { "s" }
);
assert!(forks.len() >= 2);
// This is a somewhat tortured technique to ensure
// that our resolver state is only cloned as much
// as it needs to be. We basically move the state
// into `forked_states`, and then only clone it if
// there is at least one more fork to visit.
let package = current_state.next;
let mut cur_state = Some(current_state);
let forks_len = forks.len();
forks
.into_iter()
.enumerate()
.map(move |(i, fork)| {
let is_last = i == forks_len - 1;
let forked_state = cur_state.take().unwrap();
if !is_last {
cur_state = Some(forked_state.clone());
}
let env = fork.env.clone();
(fork, forked_state.with_env(env))
})
.map(move |(fork, mut forked_state)| {
// Enrich the state with any URLs, etc.
forked_state
.visit_package_version_dependencies(
package,
version,
&self.urls,
&self.indexes,
&fork.dependencies,
&self.git,
&self.workspace_members,
self.selector.resolution_strategy(),
)
.map_err(|err| {
enrich_dependency_error(err, package, version, &forked_state.pubgrub)
})?;
// Emit a request to fetch the metadata for each registry package.
self.visit_dependencies(&fork.dependencies, &forked_state, request_sink)
.map_err(|err| {
enrich_dependency_error(err, package, version, &forked_state.pubgrub)
})?;
// Add the dependencies to the state.
forked_state.add_package_version_dependencies(package, version, fork.dependencies);
Ok(forked_state)
})
}
/// Convert the dependency [`Fork`]s into [`ForkState`]s.
#[allow(clippy::unused_self)]
fn version_forks_to_fork_states(
&self,
current_state: ForkState,
forks: Vec<VersionFork>,
) -> impl Iterator<Item = ForkState> + '_ {
// This is a somewhat tortured technique to ensure
// that our resolver state is only cloned as much
// as it needs to be. We basically move the state
// into `forked_states`, and then only clone it if
// there is at least one more fork to visit.
let mut cur_state = Some(current_state);
let forks_len = forks.len();
forks.into_iter().enumerate().map(move |(i, fork)| {
let is_last = i == forks_len - 1;
let mut forked_state = cur_state.take().unwrap();
if !is_last {
cur_state = Some(forked_state.clone());
}
forked_state.initial_id = Some(fork.id);
forked_state.initial_version = fork.version;
forked_state.with_env(fork.env)
})
}
/// Visit a set of [`PubGrubDependency`] entities prior to selection.
fn visit_dependencies(
&self,
dependencies: &[PubGrubDependency],
state: &ForkState,
request_sink: &Sender<Request>,
) -> Result<(), ResolveError> {
for dependency in dependencies {
let PubGrubDependency {
package,
version: _,
parent: _,
url: _,
} = dependency;
let url = package.name().and_then(|name| state.fork_urls.get(name));
let index = package.name().and_then(|name| state.fork_indexes.get(name));
self.visit_package(package, url, index, request_sink)?;
}
Ok(())
}
/// Visit a [`PubGrubPackage`] prior to selection. This should be called on a [`PubGrubPackage`]
/// before it is selected, to allow metadata to be fetched in parallel.
fn visit_package(
&self,
package: &PubGrubPackage,
url: Option<&VerbatimParsedUrl>,
index: Option<&IndexMetadata>,
request_sink: &Sender<Request>,
) -> Result<(), ResolveError> {
// Ignore unresolved URL packages, i.e., packages that use a direct URL in some forks.
if url.is_none()
&& package
.name()
.map(|name| self.urls.any_url(name))
.unwrap_or(true)
{
return Ok(());
}
self.request_package(package, url, index, request_sink)
}
fn request_package(
&self,
package: &PubGrubPackage,
url: Option<&VerbatimParsedUrl>,
index: Option<&IndexMetadata>,
request_sink: &Sender<Request>,
) -> Result<(), ResolveError> {
// Only request real packages.
let Some(name) = package.name_no_root() else {
return Ok(());
};
if let Some(url) = url {
// Verify that the package is allowed under the hash-checking policy.
if !self.hasher.allows_url(&url.verbatim) {
return Err(ResolveError::UnhashedPackage(name.clone()));
}
// Emit a request to fetch the metadata for this distribution.
let dist = Dist::from_url(name.clone(), url.clone())?;
if self.index.distributions().register(dist.version_id()) {
request_sink.blocking_send(Request::Dist(dist))?;
}
} else if let Some(index) = index {
// Emit a request to fetch the metadata for this package on the index.
if self
.index
.explicit()
.register((name.clone(), index.url().clone()))
{
request_sink.blocking_send(Request::Package(name.clone(), Some(index.clone())))?;
}
} else {
// Emit a request to fetch the metadata for this package.
if self.index.implicit().register(name.clone()) {
request_sink.blocking_send(Request::Package(name.clone(), None))?;
}
}
Ok(())
}
/// Visit the set of [`PubGrubPackage`] candidates prior to selection. This allows us to fetch
/// metadata for all packages in parallel.
fn pre_visit<'data>(
packages: impl Iterator<Item = (&'data PubGrubPackage, &'data Range<Version>)>,
urls: &Urls,
indexes: &Indexes,
python_requirement: &PythonRequirement,
request_sink: &Sender<Request>,
) -> Result<(), ResolveError> {
// Iterate over the potential packages, and fetch file metadata for any of them. These
// represent our current best guesses for the versions that we _might_ select.
for (package, range) in packages {
let PubGrubPackageInner::Package {
name,
extra: None,
group: None,
marker: MarkerTree::TRUE,
} = &**package
else {
continue;
};
// Avoid pre-visiting packages that have any URLs in any fork. At this point we can't
// tell whether they are registry distributions or which url they use.
if urls.any_url(name) {
continue;
}
// Avoid visiting packages that may use an explicit index.
if indexes.contains_key(name) {
continue;
}
request_sink.blocking_send(Request::Prefetch(
name.clone(),
range.clone(),
python_requirement.clone(),
))?;
}
Ok(())
}
/// Given a candidate package, choose the next version in range to try.
///
/// Returns `None` when there are no versions in the given range, rejecting the current partial
/// solution.
// TODO(konsti): re-enable tracing. This trace is crucial to understanding the
// tracing-durations-export diagrams, but it took ~5% resolver thread runtime for apache-airflow
// when I last measured.
#[cfg_attr(feature = "tracing-durations-export", instrument(skip_all, fields(%package)))]
fn choose_version(
&self,
package: &PubGrubPackage,
id: Id<PubGrubPackage>,
index: Option<&IndexUrl>,
range: &Range<Version>,
pins: &mut FilePins,
preferences: &Preferences,
fork_urls: &ForkUrls,
env: &ResolverEnvironment,
python_requirement: &PythonRequirement,
pubgrub: &State<UvDependencyProvider>,
visited: &mut FxHashSet<PackageName>,
request_sink: &Sender<Request>,
) -> Result<Option<ResolverVersion>, ResolveError> {
match &**package {
PubGrubPackageInner::Root(_) => {
Ok(Some(ResolverVersion::Unforked(MIN_VERSION.clone())))
}
PubGrubPackageInner::Python(_) => {
// Dependencies on Python are only added when a package is incompatible; as such,
// we don't need to do anything here.
Ok(None)
}
PubGrubPackageInner::System(_) => {
// We don't care what the actual version is here, just that it's consistent across
// the dependency graph.
let Some(version) = range.as_singleton() else {
return Ok(None);
};
Ok(Some(ResolverVersion::Unforked(version.clone())))
}
PubGrubPackageInner::Marker { name, .. }
| PubGrubPackageInner::Extra { name, .. }
| PubGrubPackageInner::Group { name, .. }
| PubGrubPackageInner::Package { name, .. } => {
if let Some(url) = package.name().and_then(|name| fork_urls.get(name)) {
self.choose_version_url(name, range, url, python_requirement)
} else {
self.choose_version_registry(
package,
id,
name,
index,
range,
preferences,
env,
python_requirement,
pubgrub,
pins,
visited,
request_sink,
)
}
}
}
}
/// Select a version for a URL requirement. Since there is only one version per URL, we return
/// that version if it is in range and `None` otherwise.
fn choose_version_url(
&self,
name: &PackageName,
range: &Range<Version>,
url: &VerbatimParsedUrl,
python_requirement: &PythonRequirement,
) -> Result<Option<ResolverVersion>, ResolveError> {
debug!(
"Searching for a compatible version of {name} @ {} ({range})",
url.verbatim
);
let dist = PubGrubDistribution::from_url(name, url);
let response = self
.index
.distributions()
.wait_blocking(&dist.version_id())
.ok_or_else(|| ResolveError::UnregisteredTask(dist.version_id().to_string()))?;
// If we failed to fetch the metadata for a URL, we can't proceed.
let metadata = match &*response {
MetadataResponse::Found(archive) => &archive.metadata,
MetadataResponse::Unavailable(reason) => {
self.unavailable_packages
.insert(name.clone(), reason.into());
return Ok(None);
}
// TODO(charlie): Add derivation chain for URL dependencies. In practice, this isn't
// critical since we fetch URL dependencies _prior_ to invoking the resolver.
MetadataResponse::Error(dist, err) => {
return Err(ResolveError::Dist(
DistErrorKind::from_requested_dist(dist, &**err),
dist.clone(),
DerivationChain::default(),
err.clone(),
));
}
};
let version = &metadata.version;
// The version is incompatible with the requirement.
if !range.contains(version) {
return Ok(None);
}
// The version is incompatible due to its Python requirement.
if let Some(requires_python) = metadata.requires_python.as_ref() {
if !python_requirement
.installed()
.is_contained_by(requires_python)
{
return Ok(Some(ResolverVersion::Unavailable(
version.clone(),
UnavailableVersion::IncompatibleDist(IncompatibleDist::Source(
IncompatibleSource::RequiresPython(
requires_python.clone(),
PythonRequirementKind::Installed,
),
)),
)));
}
if !python_requirement.target().is_contained_by(requires_python) {
return Ok(Some(ResolverVersion::Unavailable(
version.clone(),
UnavailableVersion::IncompatibleDist(IncompatibleDist::Source(
IncompatibleSource::RequiresPython(
requires_python.clone(),
PythonRequirementKind::Target,
),
)),
)));
}
}
Ok(Some(ResolverVersion::Unforked(version.clone())))
}
/// Given a candidate registry requirement, choose the next version in range to try, or `None`
/// if there is no version in this range.
fn choose_version_registry(
&self,
package: &PubGrubPackage,
id: Id<PubGrubPackage>,
name: &PackageName,
index: Option<&IndexUrl>,
range: &Range<Version>,
preferences: &Preferences,
env: &ResolverEnvironment,
python_requirement: &PythonRequirement,
pubgrub: &State<UvDependencyProvider>,
pins: &mut FilePins,
visited: &mut FxHashSet<PackageName>,
request_sink: &Sender<Request>,
) -> Result<Option<ResolverVersion>, ResolveError> {
// Wait for the metadata to be available.
let versions_response = if let Some(index) = index {
self.index
.explicit()
.wait_blocking(&(name.clone(), index.clone()))
.ok_or_else(|| ResolveError::UnregisteredTask(name.to_string()))?
} else {
self.index
.implicit()
.wait_blocking(name)
.ok_or_else(|| ResolveError::UnregisteredTask(name.to_string()))?
};
visited.insert(name.clone());
let version_maps = match *versions_response {
VersionsResponse::Found(ref version_maps) => version_maps.as_slice(),
VersionsResponse::NoIndex => {
self.unavailable_packages
.insert(name.clone(), UnavailablePackage::NoIndex);
&[]
}
VersionsResponse::Offline => {
self.unavailable_packages
.insert(name.clone(), UnavailablePackage::Offline);
&[]
}
VersionsResponse::NotFound => {
self.unavailable_packages
.insert(name.clone(), UnavailablePackage::NotFound);
&[]
}
};
debug!("Searching for a compatible version of {package} ({range})");
// Find a version.
let Some(candidate) = self.selector.select(
name,
range,
version_maps,
preferences,
&self.installed_packages,
&self.exclusions,
index,
env,
self.tags.as_ref(),
) else {
// Short circuit: we couldn't find _any_ versions for a package.
return Ok(None);
};
let dist = match candidate.dist() {
CandidateDist::Compatible(dist) => dist,
CandidateDist::Incompatible {
incompatible_dist: incompatibility,
prioritized_dist: _,
} => {
// If the version is incompatible because no distributions are compatible, exit early.
return Ok(Some(ResolverVersion::Unavailable(
candidate.version().clone(),
// TODO(charlie): We can avoid this clone; the candidate is dropped here and
// owns the incompatibility.
UnavailableVersion::IncompatibleDist(incompatibility.clone()),
)));
}
};
// Check whether the version is incompatible due to its Python requirement.
if let Some((requires_python, incompatibility)) =
Self::check_requires_python(dist, python_requirement)
{
if matches!(self.options.fork_strategy, ForkStrategy::RequiresPython) {
if env.marker_environment().is_none() {
let forks = fork_version_by_python_requirement(
requires_python,
python_requirement,
env,
);
if !forks.is_empty() {
debug!(
"Forking Python requirement `{}` on `{}` for {}=={} ({})",
python_requirement.target(),
requires_python,
name,
candidate.version(),
forks
.iter()
.map(ToString::to_string)
.collect::<Vec<_>>()
.join(", ")
);
let forks = forks
.into_iter()
.map(|env| VersionFork {
env,
id,
version: None,
})
.collect();
return Ok(Some(ResolverVersion::Forked(forks)));
}
}
}
return Ok(Some(ResolverVersion::Unavailable(
candidate.version().clone(),
UnavailableVersion::IncompatibleDist(incompatibility),
)));
}
// Check whether this version covers all supported platforms; and, if not, generate a fork.
if let Some(forked) = self.fork_version_registry(
&candidate,
dist,
version_maps,
package,
id,
name,
index,
range,
preferences,
env,
pubgrub,
pins,
request_sink,
)? {
return Ok(Some(forked));
}
let filename = match dist.for_installation() {
ResolvedDistRef::InstallableRegistrySourceDist { sdist, .. } => sdist
.filename()
.unwrap_or(Cow::Borrowed("unknown filename")),
ResolvedDistRef::InstallableRegistryBuiltDist { wheel, .. } => wheel
.filename()
.unwrap_or(Cow::Borrowed("unknown filename")),
ResolvedDistRef::Installed { .. } => Cow::Borrowed("installed"),
};
debug!(
"Selecting: {}=={} [{}] ({})",
name,
candidate.version(),
candidate.choice_kind(),
filename,
);
self.visit_candidate(&candidate, dist, package, name, pins, request_sink)?;
let version = candidate.version().clone();
Ok(Some(ResolverVersion::Unforked(version)))
}
/// Determine whether a candidate covers all supported platforms; and, if not, generate a fork.
///
/// This only ever applies to versions that lack source distributions And, for now, we only
/// apply it in two cases:
///
/// 1. Local versions, where the non-local version has greater platform coverage. The intent is
/// such that, if we're resolving PyTorch, and we choose `torch==2.5.2+cpu`, we want to
/// fork so that we can select `torch==2.5.2` on macOS (since the `+cpu` variant doesn't
/// include any macOS wheels).
/// 2. Platforms that the user explicitly marks as "required" (opt-in). For example, the user
/// might require that the generated resolution always includes wheels for x86 macOS, and
/// fails entirely if the platform is unsupported.
fn fork_version_registry(
&self,
candidate: &Candidate,
dist: &CompatibleDist,
version_maps: &[VersionMap],
package: &PubGrubPackage,
id: Id<PubGrubPackage>,
name: &PackageName,
index: Option<&IndexUrl>,
range: &Range<Version>,
preferences: &Preferences,
env: &ResolverEnvironment,
pubgrub: &State<UvDependencyProvider>,
pins: &mut FilePins,
request_sink: &Sender<Request>,
) -> Result<Option<ResolverVersion>, ResolveError> {
// This only applies to universal resolutions.
if env.marker_environment().is_some() {
return Ok(None);
}
// If the package is already compatible with all environments (as is the case for
// packages that include a source distribution), we don't need to fork.
if dist.implied_markers().is_true() {
return Ok(None);
}
// If the user explicitly marked a platform as required, ensure it has coverage.
for marker in self.options.required_environments.iter().copied() {
// If the platform is part of the current environment...
if env.included_by_marker(marker) {
// But isn't supported by the distribution...
if dist.implied_markers().is_disjoint(marker)
&& !find_environments(id, pubgrub).is_disjoint(marker)
{
// Then we need to fork.
let Some((left, right)) = fork_version_by_marker(env, marker) else {
return Ok(Some(ResolverVersion::Unavailable(
candidate.version().clone(),
UnavailableVersion::IncompatibleDist(IncompatibleDist::Wheel(
IncompatibleWheel::MissingPlatform(marker),
)),
)));
};
debug!(
"Forking on required platform `{}` for {}=={} ({})",
marker.try_to_string().unwrap_or_else(|| "true".to_string()),
name,
candidate.version(),
[&left, &right]
.iter()
.map(ToString::to_string)
.collect::<Vec<_>>()
.join(", ")
);
let forks = vec![
VersionFork {
env: left,
id,
version: None,
},
VersionFork {
env: right,
id,
version: None,
},
];
return Ok(Some(ResolverVersion::Forked(forks)));
}
}
}
// For now, we only apply this to local versions.
if !candidate.version().is_local() {
return Ok(None);
}
debug!(
"Looking at local version: {}=={}",
name,
candidate.version()
);
// If there's a non-local version...
let range = range.clone().intersection(&Range::singleton(
candidate.version().clone().without_local(),
));
let Some(base_candidate) = self.selector.select(
name,
&range,
version_maps,
preferences,
&self.installed_packages,
&self.exclusions,
index,
env,
self.tags.as_ref(),
) else {
return Ok(None);
};
let CandidateDist::Compatible(base_dist) = base_candidate.dist() else {
return Ok(None);
};
// ...and the non-local version has greater platform support...
let mut remainder = {
let mut remainder = base_dist.implied_markers();
remainder.and(dist.implied_markers().negate());
remainder
};
if remainder.is_false() {
return Ok(None);
}
// If the remainder isn't relevant to the current environment, there's no need to fork.
// For example, if we're solving for `sys_platform == 'darwin'` but the remainder is
// `sys_platform == 'linux'`, we don't need to fork.
if !env.included_by_marker(remainder) {
return Ok(None);
}
// Similarly, if the local distribution is incompatible with the current environment, then
// use the base distribution instead (but don't fork).
if !env.included_by_marker(dist.implied_markers()) {
let filename = match dist.for_installation() {
ResolvedDistRef::InstallableRegistrySourceDist { sdist, .. } => sdist
.filename()
.unwrap_or(Cow::Borrowed("unknown filename")),
ResolvedDistRef::InstallableRegistryBuiltDist { wheel, .. } => wheel
.filename()
.unwrap_or(Cow::Borrowed("unknown filename")),
ResolvedDistRef::Installed { .. } => Cow::Borrowed("installed"),
};
debug!(
"Preferring non-local candidate: {}=={} [{}] ({})",
name,
base_candidate.version(),
base_candidate.choice_kind(),
filename,
);
self.visit_candidate(
&base_candidate,
base_dist,
package,
name,
pins,
request_sink,
)?;
return Ok(Some(ResolverVersion::Unforked(
base_candidate.version().clone(),
)));
}
// If the implied markers includes _some_ macOS environments, but the remainder doesn't,
// then we can extend the implied markers to include _all_ macOS environments. Same goes for
// Linux and Windows.
//
// The idea here is that the base version could support (e.g.) ARM macOS, but not Intel
// macOS. But if _neither_ version supports Intel macOS, we'd rather use `sys_platform == 'darwin'`
// instead of `sys_platform == 'darwin' and platform_machine == 'arm64'`, since it's much
// simpler, and _neither_ version will succeed with Intel macOS anyway.
for value in [
arcstr::literal!("darwin"),
arcstr::literal!("linux"),
arcstr::literal!("win32"),
] {
let sys_platform = MarkerTree::expression(MarkerExpression::String {
key: MarkerValueString::SysPlatform,
operator: MarkerOperator::Equal,
value,
});
if dist.implied_markers().is_disjoint(sys_platform)
&& !remainder.is_disjoint(sys_platform)
{
remainder.or(sys_platform);
}
}
// Otherwise, we need to fork.
let Some((base_env, local_env)) = fork_version_by_marker(env, remainder) else {
return Ok(None);
};
debug!(
"Forking platform for {}=={} ({})",
name,
candidate.version(),
[&base_env, &local_env]
.iter()
.map(ToString::to_string)
.collect::<Vec<_>>()
.join(", ")
);
self.visit_candidate(candidate, dist, package, name, pins, request_sink)?;
self.visit_candidate(
&base_candidate,
base_dist,
package,
name,
pins,
request_sink,
)?;
let forks = vec![
VersionFork {
env: base_env.clone(),
id,
version: Some(base_candidate.version().clone()),
},
VersionFork {
env: local_env.clone(),
id,
version: Some(candidate.version().clone()),
},
];
Ok(Some(ResolverVersion::Forked(forks)))
}
/// Visit a selected candidate.
fn visit_candidate(
&self,
candidate: &Candidate,
dist: &CompatibleDist,
package: &PubGrubPackage,
name: &PackageName,
pins: &mut FilePins,
request_sink: &Sender<Request>,
) -> Result<(), ResolveError> {
// We want to return a package pinned to a specific version; but we _also_ want to
// store the exact file that we selected to satisfy that version.
pins.insert(candidate, dist);
// Emit a request to fetch the metadata for this version.
if matches!(&**package, PubGrubPackageInner::Package { .. }) {
if self.dependency_mode.is_transitive() {
if self.index.distributions().register(candidate.version_id()) {
if name != dist.name() {
return Err(ResolveError::MismatchedPackageName {
request: "distribution",
expected: name.clone(),
actual: dist.name().clone(),
});
}
// Verify that the package is allowed under the hash-checking policy.
if !self
.hasher
.allows_package(candidate.name(), candidate.version())
{
return Err(ResolveError::UnhashedPackage(candidate.name().clone()));
}
let request = Request::from(dist.for_resolution());
request_sink.blocking_send(request)?;
}
}
}
Ok(())
}
/// Check if the distribution is incompatible with the Python requirement, and if so, return
/// the incompatibility.
fn check_requires_python<'dist>(
dist: &'dist CompatibleDist,
python_requirement: &PythonRequirement,
) -> Option<(&'dist VersionSpecifiers, IncompatibleDist)> {
let requires_python = dist.requires_python()?;
if python_requirement.target().is_contained_by(requires_python) {
None
} else {
let incompatibility = if matches!(dist, CompatibleDist::CompatibleWheel { .. }) {
IncompatibleDist::Wheel(IncompatibleWheel::RequiresPython(
requires_python.clone(),
if python_requirement.installed() == python_requirement.target() {
PythonRequirementKind::Installed
} else {
PythonRequirementKind::Target
},
))
} else {
IncompatibleDist::Source(IncompatibleSource::RequiresPython(
requires_python.clone(),
if python_requirement.installed() == python_requirement.target() {
PythonRequirementKind::Installed
} else {
PythonRequirementKind::Target
},
))
};
Some((requires_python, incompatibility))
}
}
/// Given a candidate package and version, return its dependencies.
#[instrument(skip_all, fields(%package, %version))]
fn get_dependencies_forking(
&self,
id: Id<PubGrubPackage>,
package: &PubGrubPackage,
version: &Version,
pins: &FilePins,
fork_urls: &ForkUrls,
env: &ResolverEnvironment,
python_requirement: &PythonRequirement,
pubgrub: &State<UvDependencyProvider>,
) -> Result<ForkedDependencies, ResolveError> {
let result = self.get_dependencies(
id,
package,
version,
pins,
fork_urls,
env,
python_requirement,
pubgrub,
);
if env.marker_environment().is_some() {
result.map(|deps| match deps {
Dependencies::Available(deps) | Dependencies::Unforkable(deps) => {
ForkedDependencies::Unforked(deps)
}
Dependencies::Unavailable(err) => ForkedDependencies::Unavailable(err),
})
} else {
Ok(result?.fork(env, python_requirement, &self.conflicts))
}
}
/// Given a candidate package and version, return its dependencies.
#[instrument(skip_all, fields(%package, %version))]
fn get_dependencies(
&self,
id: Id<PubGrubPackage>,
package: &PubGrubPackage,
version: &Version,
pins: &FilePins,
fork_urls: &ForkUrls,
env: &ResolverEnvironment,
python_requirement: &PythonRequirement,
pubgrub: &State<UvDependencyProvider>,
) -> Result<Dependencies, ResolveError> {
let url = package.name().and_then(|name| fork_urls.get(name));
let dependencies = match &**package {
PubGrubPackageInner::Root(_) => {
let no_dev_deps = BTreeMap::default();
let requirements = self.flatten_requirements(
&self.requirements,
&no_dev_deps,
None,
None,
None,
env,
python_requirement,
);
requirements
.flat_map(move |requirement| {
PubGrubDependency::from_requirement(
&self.conflicts,
requirement,
None,
Some(package),
)
})
.collect()
}
PubGrubPackageInner::Package {
name,
extra,
group,
marker: _,
} => {
// If we're excluding transitive dependencies, short-circuit.
if self.dependency_mode.is_direct() {
return Ok(Dependencies::Unforkable(Vec::default()));
}
// Determine the distribution to lookup.
let dist = match url {
Some(url) => PubGrubDistribution::from_url(name, url),
None => PubGrubDistribution::from_registry(name, version),
};
let version_id = dist.version_id();
// If the package does not exist in the registry or locally, we cannot fetch its dependencies
if self.dependency_mode.is_transitive()
&& self.unavailable_packages.get(name).is_some()
&& self.installed_packages.get_packages(name).is_empty()
{
debug_assert!(
false,
"Dependencies were requested for a package that is not available"
);
return Err(ResolveError::PackageUnavailable(name.clone()));
}
// Wait for the metadata to be available.
let response = self
.index
.distributions()
.wait_blocking(&version_id)
.ok_or_else(|| ResolveError::UnregisteredTask(version_id.to_string()))?;
let metadata = match &*response {
MetadataResponse::Found(archive) => &archive.metadata,
MetadataResponse::Unavailable(reason) => {
let unavailable_version = UnavailableVersion::from(reason);
let message = unavailable_version.singular_message();
if let Some(err) = reason.source() {
// Show the detailed error for metadata parse errors.
warn!("{name} {message}: {err}");
} else {
warn!("{name} {message}");
}
self.incomplete_packages
.entry(name.clone())
.or_default()
.insert(version.clone(), reason.clone());
return Ok(Dependencies::Unavailable(unavailable_version));
}
MetadataResponse::Error(dist, err) => {
let chain = DerivationChainBuilder::from_state(id, version, pubgrub)
.unwrap_or_default();
return Err(ResolveError::Dist(
DistErrorKind::from_requested_dist(dist, &**err),
dist.clone(),
chain,
err.clone(),
));
}
};
// If there was no requires-python on the index page, we may have an incompatible
// distribution.
if let Some(requires_python) = &metadata.requires_python {
if !python_requirement.target().is_contained_by(requires_python) {
return Ok(Dependencies::Unavailable(
UnavailableVersion::RequiresPython(requires_python.clone()),
));
}
}
// Identify any system dependencies based on the index URL.
let system_dependencies = self
.options
.torch_backend
.as_ref()
.filter(|torch_backend| matches!(torch_backend, TorchStrategy::Cuda { .. }))
.filter(|torch_backend| torch_backend.has_system_dependency(name))
.and_then(|_| pins.get(name, version).and_then(ResolvedDist::index))
.map(IndexUrl::url)
.and_then(SystemDependency::from_index)
.into_iter()
.inspect(|system_dependency| {
debug!(
"Adding system dependency `{}` for `{package}@{version}`",
system_dependency
);
})
.map(PubGrubDependency::from);
let requirements = self.flatten_requirements(
&metadata.requires_dist,
&metadata.dependency_groups,
extra.as_ref(),
group.as_ref(),
Some(name),
env,
python_requirement,
);
requirements
.flat_map(|requirement| {
PubGrubDependency::from_requirement(
&self.conflicts,
requirement,
group.as_ref(),
Some(package),
)
})
.chain(system_dependencies)
.collect()
}
PubGrubPackageInner::Python(_) => return Ok(Dependencies::Unforkable(Vec::default())),
PubGrubPackageInner::System(_) => return Ok(Dependencies::Unforkable(Vec::default())),
// Add a dependency on both the marker and base package.
PubGrubPackageInner::Marker { name, marker } => {
return Ok(Dependencies::Unforkable(
[MarkerTree::TRUE, *marker]
.into_iter()
.map(move |marker| PubGrubDependency {
package: PubGrubPackage::from(PubGrubPackageInner::Package {
name: name.clone(),
extra: None,
group: None,
marker,
}),
version: Range::singleton(version.clone()),
parent: None,
url: None,
})
.collect(),
));
}
// Add a dependency on both the extra and base package, with and without the marker.
PubGrubPackageInner::Extra {
name,
extra,
marker,
} => {
return Ok(Dependencies::Unforkable(
[MarkerTree::TRUE, *marker]
.into_iter()
.dedup()
.flat_map(move |marker| {
[None, Some(extra)]
.into_iter()
.map(move |extra| PubGrubDependency {
package: PubGrubPackage::from(PubGrubPackageInner::Package {
name: name.clone(),
extra: extra.cloned(),
group: None,
marker,
}),
version: Range::singleton(version.clone()),
parent: None,
url: None,
})
})
.collect(),
));
}
// Add a dependency on the dependency group, with and without the marker.
PubGrubPackageInner::Group {
name,
group,
marker,
} => {
return Ok(Dependencies::Unforkable(
[MarkerTree::TRUE, *marker]
.into_iter()
.dedup()
.map(|marker| PubGrubDependency {
package: PubGrubPackage::from(PubGrubPackageInner::Package {
name: name.clone(),
extra: None,
group: Some(group.clone()),
marker,
}),
version: Range::singleton(version.clone()),
parent: None,
url: None,
})
.collect(),
));
}
};
Ok(Dependencies::Available(dependencies))
}
/// The regular and dev dependencies filtered by Python version and the markers of this fork,
/// plus the extras dependencies of the current package (e.g., `black` depending on
/// `black[colorama]`).
fn flatten_requirements<'a>(
&'a self,
dependencies: &'a [Requirement],
dev_dependencies: &'a BTreeMap<GroupName, Box<[Requirement]>>,
extra: Option<&'a ExtraName>,
dev: Option<&'a GroupName>,
name: Option<&PackageName>,
env: &'a ResolverEnvironment,
python_requirement: &'a PythonRequirement,
) -> impl Iterator<Item = Cow<'a, Requirement>> {
let python_marker = python_requirement.to_marker_tree();
if let Some(dev) = dev {
// Dependency groups can include the project itself, so no need to flatten recursive
// dependencies.
Either::Left(Either::Left(self.requirements_for_extra(
dev_dependencies.get(dev).into_iter().flatten(),
extra,
env,
python_marker,
python_requirement,
)))
} else if !dependencies
.iter()
.any(|req| name == Some(&req.name) && !req.extras.is_empty())
{
// If the project doesn't define any recursive dependencies, take the fast path.
Either::Left(Either::Right(self.requirements_for_extra(
dependencies.iter(),
extra,
env,
python_marker,
python_requirement,
)))
} else {
let mut requirements = self
.requirements_for_extra(
dependencies.iter(),
extra,
env,
python_marker,
python_requirement,
)
.collect::<Vec<_>>();
// Transitively process all extras that are recursively included, starting with the current
// extra.
let mut seen = FxHashSet::<(ExtraName, MarkerTree)>::default();
let mut queue: VecDeque<_> = requirements
.iter()
.filter(|req| name == Some(&req.name))
.flat_map(|req| req.extras.iter().cloned().map(|extra| (extra, req.marker)))
.collect();
while let Some((extra, marker)) = queue.pop_front() {
if !seen.insert((extra.clone(), marker)) {
continue;
}
for requirement in self.requirements_for_extra(
dependencies,
Some(&extra),
env,
python_marker,
python_requirement,
) {
let requirement = match requirement {
Cow::Owned(mut requirement) => {
requirement.marker.and(marker);
requirement
}
Cow::Borrowed(requirement) => {
let mut marker = marker;
marker.and(requirement.marker);
Requirement {
name: requirement.name.clone(),
extras: requirement.extras.clone(),
groups: requirement.groups.clone(),
source: requirement.source.clone(),
origin: requirement.origin.clone(),
marker: marker.simplify_extras(slice::from_ref(&extra)),
}
}
};
if name == Some(&requirement.name) {
// Add each transitively included extra.
queue.extend(
requirement
.extras
.iter()
.cloned()
.map(|extra| (extra, requirement.marker)),
);
} else {
// Add the requirements for that extra.
requirements.push(Cow::Owned(requirement));
}
}
}
// Retain any self-constraints for that extra, e.g., if `project[foo]` includes
// `project[bar]>1.0`, as a dependency, we need to propagate `project>1.0`, in addition to
// transitively expanding `project[bar]`.
let mut self_constraints = vec![];
for req in &requirements {
if name == Some(&req.name) && !req.source.is_empty() {
self_constraints.push(Requirement {
name: req.name.clone(),
extras: Box::new([]),
groups: req.groups.clone(),
source: req.source.clone(),
origin: req.origin.clone(),
marker: req.marker,
});
}
}
// Drop all the self-requirements now that we flattened them out.
requirements.retain(|req| name != Some(&req.name) || req.extras.is_empty());
requirements.extend(self_constraints.into_iter().map(Cow::Owned));
Either::Right(requirements.into_iter())
}
}
/// The set of the regular and dev dependencies, filtered by Python version,
/// the markers of this fork and the requested extra.
fn requirements_for_extra<'data, 'parameters>(
&'data self,
dependencies: impl IntoIterator<Item = &'data Requirement> + 'parameters,
extra: Option<&'parameters ExtraName>,
env: &'parameters ResolverEnvironment,
python_marker: MarkerTree,
python_requirement: &'parameters PythonRequirement,
) -> impl Iterator<Item = Cow<'data, Requirement>> + 'parameters
where
'data: 'parameters,
{
self.overrides
.apply(dependencies)
.filter(move |requirement| {
Self::is_requirement_applicable(
requirement,
extra,
env,
python_marker,
python_requirement,
)
})
.flat_map(move |requirement| {
iter::once(requirement.clone()).chain(self.constraints_for_requirement(
requirement,
extra,
env,
python_marker,
python_requirement,
))
})
}
/// Whether a requirement is applicable for the Python version, the markers of this fork and the
/// requested extra.
fn is_requirement_applicable(
requirement: &Requirement,
extra: Option<&ExtraName>,
env: &ResolverEnvironment,
python_marker: MarkerTree,
python_requirement: &PythonRequirement,
) -> bool {
// If the requirement isn't relevant for the current platform, skip it.
match extra {
Some(source_extra) => {
// Only include requirements that are relevant for the current extra.
if requirement.evaluate_markers(env.marker_environment(), &[]) {
return false;
}
if !requirement
.evaluate_markers(env.marker_environment(), slice::from_ref(source_extra))
{
return false;
}
if !env.included_by_group(ConflictItemRef::from((&requirement.name, source_extra)))
{
return false;
}
}
None => {
if !requirement.evaluate_markers(env.marker_environment(), &[]) {
return false;
}
}
}
// If the requirement would not be selected with any Python version
// supported by the root, skip it.
if python_marker.is_disjoint(requirement.marker) {
trace!(
"Skipping {requirement} because of Requires-Python: {requires_python}",
requires_python = python_requirement.target(),
);
return false;
}
// If we're in a fork in universal mode, ignore any dependency that isn't part of
// this fork (but will be part of another fork).
if !env.included_by_marker(requirement.marker) {
trace!("Skipping {requirement} because of {env}");
return false;
}
true
}
/// The constraints applicable to the requirement, filtered by Python version, the markers of
/// this fork and the requested extra.
fn constraints_for_requirement<'data, 'parameters>(
&'data self,
requirement: Cow<'data, Requirement>,
extra: Option<&'parameters ExtraName>,
env: &'parameters ResolverEnvironment,
python_marker: MarkerTree,
python_requirement: &'parameters PythonRequirement,
) -> impl Iterator<Item = Cow<'data, Requirement>> + 'parameters
where
'data: 'parameters,
{
self.constraints
.get(&requirement.name)
.into_iter()
.flatten()
.filter_map(move |constraint| {
// If the requirement would not be selected with any Python version
// supported by the root, skip it.
let constraint = if constraint.marker.is_true() {
// Additionally, if the requirement is `requests ; sys_platform == 'darwin'`
// and the constraint is `requests ; python_version == '3.6'`, the
// constraint should only apply when _both_ markers are true.
if requirement.marker.is_true() {
Cow::Borrowed(constraint)
} else {
let mut marker = constraint.marker;
marker.and(requirement.marker);
if marker.is_false() {
trace!(
"Skipping {constraint} because of disjoint markers: `{}` vs. `{}`",
constraint.marker.try_to_string().unwrap(),
requirement.marker.try_to_string().unwrap(),
);
return None;
}
Cow::Owned(Requirement {
name: constraint.name.clone(),
extras: constraint.extras.clone(),
groups: constraint.groups.clone(),
source: constraint.source.clone(),
origin: constraint.origin.clone(),
marker,
})
}
} else {
let requires_python = python_requirement.target();
let mut marker = constraint.marker;
marker.and(requirement.marker);
if marker.is_false() {
trace!(
"Skipping {constraint} because of disjoint markers: `{}` vs. `{}`",
constraint.marker.try_to_string().unwrap(),
requirement.marker.try_to_string().unwrap(),
);
return None;
}
// Additionally, if the requirement is `requests ; sys_platform == 'darwin'`
// and the constraint is `requests ; python_version == '3.6'`, the
// constraint should only apply when _both_ markers are true.
if python_marker.is_disjoint(marker) {
trace!(
"Skipping constraint {requirement} because of Requires-Python: {requires_python}"
);
return None;
}
if marker == constraint.marker {
Cow::Borrowed(constraint)
} else {
Cow::Owned(Requirement {
name: constraint.name.clone(),
extras: constraint.extras.clone(),
groups: constraint.groups.clone(),
source: constraint.source.clone(),
origin: constraint.origin.clone(),
marker,
})
}
};
// If we're in a fork in universal mode, ignore any dependency that isn't part of
// this fork (but will be part of another fork).
if !env.included_by_marker(constraint.marker) {
trace!("Skipping {constraint} because of {env}");
return None;
}
// If the constraint isn't relevant for the current platform, skip it.
match extra {
Some(source_extra) => {
if !constraint
.evaluate_markers(env.marker_environment(), slice::from_ref(source_extra))
{
return None;
}
if !env.included_by_group(ConflictItemRef::from((&requirement.name, source_extra)))
{
return None;
}
}
None => {
if !constraint.evaluate_markers(env.marker_environment(), &[]) {
return None;
}
}
}
Some(constraint)
})
}
/// Fetch the metadata for a stream of packages and versions.
async fn fetch<Provider: ResolverProvider>(
self: Arc<Self>,
provider: Arc<Provider>,
request_stream: Receiver<Request>,
) -> Result<(), ResolveError> {
let mut response_stream = ReceiverStream::new(request_stream)
.map(|request| self.process_request(request, &*provider).boxed_local())
// Allow as many futures as possible to start in the background.
// Backpressure is provided by at a more granular level by `DistributionDatabase`
// and `SourceDispatch`, as well as the bounded request channel.
.buffer_unordered(usize::MAX);
while let Some(response) = response_stream.next().await {
match response? {
Some(Response::Package(name, index, version_map)) => {
trace!("Received package metadata for: {name}");
if let Some(index) = index {
self.index
.explicit()
.done((name, index), Arc::new(version_map));
} else {
self.index.implicit().done(name, Arc::new(version_map));
}
}
Some(Response::Installed { dist, metadata }) => {
trace!("Received installed distribution metadata for: {dist}");
self.index
.distributions()
.done(dist.version_id(), Arc::new(metadata));
}
Some(Response::Dist { dist, metadata }) => {
let dist_kind = match dist {
Dist::Built(_) => "built",
Dist::Source(_) => "source",
};
trace!("Received {dist_kind} distribution metadata for: {dist}");
if let MetadataResponse::Unavailable(reason) = &metadata {
let message = UnavailableVersion::from(reason).singular_message();
if let Some(err) = reason.source() {
// Show the detailed error for metadata parse errors.
warn!("{dist} {message}: {err}");
} else {
warn!("{dist} {message}");
}
}
self.index
.distributions()
.done(dist.version_id(), Arc::new(metadata));
}
None => {}
}
}
Ok::<(), ResolveError>(())
}
#[instrument(skip_all, fields(%request))]
async fn process_request<Provider: ResolverProvider>(
&self,
request: Request,
provider: &Provider,
) -> Result<Option<Response>, ResolveError> {
match request {
// Fetch package metadata from the registry.
Request::Package(package_name, index) => {
let package_versions = provider
.get_package_versions(&package_name, index.as_ref())
.boxed_local()
.await
.map_err(ResolveError::Client)?;
Ok(Some(Response::Package(
package_name,
index.map(IndexMetadata::into_url),
package_versions,
)))
}
// Fetch distribution metadata from the distribution database.
Request::Dist(dist) => {
if let Some(version) = dist.version() {
if let Some(index) = dist.index() {
// Check the implicit indexes for pre-provided metadata.
let versions_response = self.index.implicit().get(dist.name());
if let Some(VersionsResponse::Found(version_maps)) =
versions_response.as_deref()
{
for version_map in version_maps {
if version_map.index() == Some(index) {
let Some(metadata) = version_map.get_metadata(version) else {
continue;
};
debug!("Found registry-provided metadata for: {dist}");
return Ok(Some(Response::Dist {
dist,
metadata: MetadataResponse::Found(
ArchiveMetadata::from_metadata23(metadata.clone()),
),
}));
}
}
}
// Check the explicit indexes for pre-provided metadata.
let versions_response = self
.index
.explicit()
.get(&(dist.name().clone(), index.clone()));
if let Some(VersionsResponse::Found(version_maps)) =
versions_response.as_deref()
{
for version_map in version_maps {
let Some(metadata) = version_map.get_metadata(version) else {
continue;
};
debug!("Found registry-provided metadata for: {dist}");
return Ok(Some(Response::Dist {
dist,
metadata: MetadataResponse::Found(
ArchiveMetadata::from_metadata23(metadata.clone()),
),
}));
}
}
}
}
let metadata = provider
.get_or_build_wheel_metadata(&dist)
.boxed_local()
.await?;
if let MetadataResponse::Found(metadata) = &metadata {
if &metadata.metadata.name != dist.name() {
return Err(ResolveError::MismatchedPackageName {
request: "distribution metadata",
expected: dist.name().clone(),
actual: metadata.metadata.name.clone(),
});
}
}
Ok(Some(Response::Dist { dist, metadata }))
}
Request::Installed(dist) => {
let metadata = provider.get_installed_metadata(&dist).boxed_local().await?;
if let MetadataResponse::Found(metadata) = &metadata {
if &metadata.metadata.name != dist.name() {
return Err(ResolveError::MismatchedPackageName {
request: "installed metadata",
expected: dist.name().clone(),
actual: metadata.metadata.name.clone(),
});
}
}
Ok(Some(Response::Installed { dist, metadata }))
}
// Pre-fetch the package and distribution metadata.
Request::Prefetch(package_name, range, python_requirement) => {
// Wait for the package metadata to become available.
let versions_response = self
.index
.implicit()
.wait(&package_name)
.await
.ok_or_else(|| ResolveError::UnregisteredTask(package_name.to_string()))?;
let version_map = match *versions_response {
VersionsResponse::Found(ref version_map) => version_map,
// Short-circuit if we did not find any versions for the package
VersionsResponse::NoIndex => {
self.unavailable_packages
.insert(package_name.clone(), UnavailablePackage::NoIndex);
return Ok(None);
}
VersionsResponse::Offline => {
self.unavailable_packages
.insert(package_name.clone(), UnavailablePackage::Offline);
return Ok(None);
}
VersionsResponse::NotFound => {
self.unavailable_packages
.insert(package_name.clone(), UnavailablePackage::NotFound);
return Ok(None);
}
};
// We don't have access to the fork state when prefetching, so assume that
// pre-release versions are allowed.
let env = ResolverEnvironment::universal(vec![]);
// Try to find a compatible version. If there aren't any compatible versions,
// short-circuit.
let Some(candidate) = self.selector.select(
&package_name,
&range,
version_map,
&self.preferences,
&self.installed_packages,
&self.exclusions,
None,
&env,
self.tags.as_ref(),
) else {
return Ok(None);
};
// If there is not a compatible distribution, short-circuit.
let Some(dist) = candidate.compatible() else {
return Ok(None);
};
// If the registry provided metadata for this distribution, use it.
for version_map in version_map {
if let Some(metadata) = version_map.get_metadata(candidate.version()) {
let dist = dist.for_resolution();
if version_map.index() == dist.index() {
debug!("Found registry-provided metadata for: {dist}");
let metadata = MetadataResponse::Found(
ArchiveMetadata::from_metadata23(metadata.clone()),
);
let dist = dist.to_owned();
if &package_name != dist.name() {
return Err(ResolveError::MismatchedPackageName {
request: "distribution",
expected: package_name,
actual: dist.name().clone(),
});
}
let response = match dist {
ResolvedDist::Installable { dist, .. } => Response::Dist {
dist: (*dist).clone(),
metadata,
},
ResolvedDist::Installed { dist } => Response::Installed {
dist: (*dist).clone(),
metadata,
},
};
return Ok(Some(response));
}
}
}
// Avoid prefetching source distributions with unbounded lower-bound ranges. This
// often leads to failed attempts to build legacy versions of packages that are
// incompatible with modern build tools.
if dist.wheel().is_none() {
if !self.selector.use_highest_version(&package_name, &env) {
if let Some((lower, _)) = range.iter().next() {
if lower == &Bound::Unbounded {
debug!(
"Skipping prefetch for unbounded minimum-version range: {package_name} ({range})"
);
return Ok(None);
}
}
}
}
// Validate the Python requirement.
let requires_python = match dist {
CompatibleDist::InstalledDist(_) => None,
CompatibleDist::SourceDist { sdist, .. }
| CompatibleDist::IncompatibleWheel { sdist, .. } => {
sdist.file.requires_python.as_ref()
}
CompatibleDist::CompatibleWheel { wheel, .. } => {
wheel.file.requires_python.as_ref()
}
};
if let Some(requires_python) = requires_python.as_ref() {
if !python_requirement.target().is_contained_by(requires_python) {
return Ok(None);
}
}
// Verify that the package is allowed under the hash-checking policy.
if !self
.hasher
.allows_package(candidate.name(), candidate.version())
{
return Ok(None);
}
// Emit a request to fetch the metadata for this version.
if self.index.distributions().register(candidate.version_id()) {
let dist = dist.for_resolution().to_owned();
if &package_name != dist.name() {
return Err(ResolveError::MismatchedPackageName {
request: "distribution",
expected: package_name,
actual: dist.name().clone(),
});
}
let response = match dist {
ResolvedDist::Installable { dist, .. } => {
let metadata = provider
.get_or_build_wheel_metadata(&dist)
.boxed_local()
.await?;
Response::Dist {
dist: (*dist).clone(),
metadata,
}
}
ResolvedDist::Installed { dist } => {
let metadata =
provider.get_installed_metadata(&dist).boxed_local().await?;
Response::Installed {
dist: (*dist).clone(),
metadata,
}
}
};
Ok(Some(response))
} else {
Ok(None)
}
}
}
}
fn convert_no_solution_err(
&self,
mut err: pubgrub::NoSolutionError<UvDependencyProvider>,
fork_urls: ForkUrls,
fork_indexes: ForkIndexes,
env: ResolverEnvironment,
current_environment: MarkerEnvironment,
exclude_newer: Option<&ExcludeNewer>,
visited: &FxHashSet<PackageName>,
) -> ResolveError {
err = NoSolutionError::collapse_local_version_segments(NoSolutionError::collapse_proxies(
err,
));
let mut unavailable_packages = FxHashMap::default();
for package in err.packages() {
if let PubGrubPackageInner::Package { name, .. } = &**package {
if let Some(reason) = self.unavailable_packages.get(name) {
unavailable_packages.insert(name.clone(), reason.clone());
}
}
}
let mut incomplete_packages = FxHashMap::default();
for package in err.packages() {
if let PubGrubPackageInner::Package { name, .. } = &**package {
if let Some(versions) = self.incomplete_packages.get(name) {
for entry in versions.iter() {
let (version, reason) = entry.pair();
incomplete_packages
.entry(name.clone())
.or_insert_with(BTreeMap::default)
.insert(version.clone(), reason.clone());
}
}
}
}
let mut available_indexes = FxHashMap::default();
let mut available_versions = FxHashMap::default();
for package in err.packages() {
let Some(name) = package.name() else { continue };
if !visited.contains(name) {
// Avoid including available versions for packages that exist in the derivation
// tree, but were never visited during resolution. We _may_ have metadata for
// these packages, but it's non-deterministic, and omitting them ensures that
// we represent the self of the resolver at the time of failure.
continue;
}
let versions_response = if let Some(index) = fork_indexes.get(name) {
self.index
.explicit()
.get(&(name.clone(), index.url().clone()))
} else {
self.index.implicit().get(name)
};
if let Some(response) = versions_response {
if let VersionsResponse::Found(ref version_maps) = *response {
// Track the available versions, across all indexes.
for version_map in version_maps {
let package_versions = available_versions
.entry(name.clone())
.or_insert_with(BTreeSet::new);
for (version, dists) in version_map.iter(&Ranges::full()) {
// Don't show versions removed by excluded-newer in hints.
if let Some(exclude_newer) =
exclude_newer.and_then(|en| en.exclude_newer_package(name))
{
let Some(prioritized_dist) = dists.prioritized_dist() else {
continue;
};
if prioritized_dist.files().all(|file| {
file.upload_time_utc_ms.is_none_or(|upload_time| {
upload_time >= exclude_newer.timestamp_millis()
})
}) {
continue;
}
}
package_versions.insert(version.clone());
}
}
// Track the indexes in which the package is available.
available_indexes
.entry(name.clone())
.or_insert(BTreeSet::new())
.extend(
version_maps
.iter()
.filter_map(|version_map| version_map.index().cloned()),
);
}
}
}
ResolveError::NoSolution(Box::new(NoSolutionError::new(
err,
self.index.clone(),
available_versions,
available_indexes,
self.selector.clone(),
self.python_requirement.clone(),
self.locations.clone(),
self.capabilities.clone(),
unavailable_packages,
incomplete_packages,
fork_urls,
fork_indexes,
env,
current_environment,
self.tags.clone(),
self.workspace_members.clone(),
self.options.clone(),
)))
}
fn on_progress(&self, package: &PubGrubPackage, version: &Version) {
if let Some(reporter) = self.reporter.as_ref() {
match &**package {
PubGrubPackageInner::Root(_) => {}
PubGrubPackageInner::Python(_) => {}
PubGrubPackageInner::System(_) => {}
PubGrubPackageInner::Marker { .. } => {}
PubGrubPackageInner::Extra { .. } => {}
PubGrubPackageInner::Group { .. } => {}
PubGrubPackageInner::Package { name, .. } => {
reporter.on_progress(name, &VersionOrUrlRef::Version(version));
}
}
}
}
fn on_complete(&self) {
if let Some(reporter) = self.reporter.as_ref() {
reporter.on_complete();
}
}
}
/// State that is used during unit propagation in the resolver, one instance per fork.
#[derive(Clone)]
pub(crate) struct ForkState {
/// The internal state used by the resolver.
///
/// Note that not all parts of this state are strictly internal. For
/// example, the edges in the dependency graph generated as part of the
/// output of resolution are derived from the "incompatibilities" tracked
/// in this state. We also ultimately retrieve the final set of version
/// assignments (to packages) from this state's "partial solution."
pubgrub: State<UvDependencyProvider>,
/// The initial package to select. If set, the first iteration over this state will avoid
/// asking PubGrub for the highest-priority package, and will instead use the provided package.
initial_id: Option<Id<PubGrubPackage>>,
/// The initial version to select. If set, the first iteration over this state will avoid
/// asking PubGrub for the highest-priority version, and will instead use the provided version.
initial_version: Option<Version>,
/// The next package on which to run unit propagation.
next: Id<PubGrubPackage>,
/// The set of pinned versions we accrue throughout resolution.
///
/// The key of this map is a package name, and each package name maps to
/// a set of versions for that package. Each version in turn is mapped
/// to a single [`ResolvedDist`]. That [`ResolvedDist`] represents, at time
/// of writing (2024/05/09), at most one wheel. The idea here is that
/// [`FilePins`] tracks precisely which wheel was selected during resolution.
/// After resolution is finished, this maps is consulted in order to select
/// the wheel chosen during resolution.
pins: FilePins,
/// Ensure we don't have duplicate URLs in any branch.
///
/// Unlike [`Urls`], we add only the URLs we have seen in this branch, and there can be only
/// one URL per package. By prioritizing direct URL dependencies over registry dependencies,
/// this map is populated for all direct URL packages before we look at any registry packages.
fork_urls: ForkUrls,
/// Ensure we don't have duplicate indexes in any branch.
///
/// Unlike [`Indexes`], we add only the indexes we have seen in this branch, and there can be
/// only one index per package.
fork_indexes: ForkIndexes,
/// When dependencies for a package are retrieved, this map of priorities
/// is updated based on how each dependency was specified. Certain types
/// of dependencies have more "priority" than others (like direct URL
/// dependencies). These priorities help determine which package to
/// consider next during resolution.
priorities: PubGrubPriorities,
/// This keeps track of the set of versions for each package that we've
/// already visited during resolution. This avoids doing redundant work.
added_dependencies: FxHashMap<Id<PubGrubPackage>, FxHashSet<Version>>,
/// The marker expression that created this state.
///
/// The root state always corresponds to a marker expression that is always
/// `true` for every `MarkerEnvironment`.
///
/// In non-universal mode, forking never occurs and so this marker
/// expression is always `true`.
///
/// Whenever dependencies are fetched, all requirement specifications
/// are checked for disjointness with the marker expression of the fork
/// in which those dependencies were fetched. If a requirement has a
/// completely disjoint marker expression (i.e., it can never be true given
/// that the marker expression that provoked the fork is true), then that
/// dependency is completely ignored.
env: ResolverEnvironment,
/// The Python requirement for this fork. Defaults to the Python requirement for
/// the resolution, but may be narrowed if a `python_version` marker is present
/// in a given fork.
///
/// For example, in:
/// ```text
/// numpy >=1.26 ; python_version >= "3.9"
/// numpy <1.26 ; python_version < "3.9"
/// ```
///
/// The top fork has a narrower Python compatibility range, and thus can find a
/// solution that omits Python 3.8 support.
python_requirement: PythonRequirement,
conflict_tracker: ConflictTracker,
/// Prefetch package versions for packages with many rejected versions.
///
/// Tracked on the fork state to avoid counting each identical version between forks as new try.
prefetcher: BatchPrefetcher,
}
impl ForkState {
fn new(
pubgrub: State<UvDependencyProvider>,
env: ResolverEnvironment,
python_requirement: PythonRequirement,
prefetcher: BatchPrefetcher,
) -> Self {
Self {
initial_id: None,
initial_version: None,
next: pubgrub.root_package,
pubgrub,
pins: FilePins::default(),
fork_urls: ForkUrls::default(),
fork_indexes: ForkIndexes::default(),
priorities: PubGrubPriorities::default(),
added_dependencies: FxHashMap::default(),
env,
python_requirement,
conflict_tracker: ConflictTracker::default(),
prefetcher,
}
}
/// Visit the dependencies for the selected version of the current package, incorporating any
/// relevant URLs and pinned indexes into the [`ForkState`].
fn visit_package_version_dependencies(
&mut self,
for_package: Id<PubGrubPackage>,
for_version: &Version,
urls: &Urls,
indexes: &Indexes,
dependencies: &[PubGrubDependency],
git: &GitResolver,
workspace_members: &BTreeSet<PackageName>,
resolution_strategy: &ResolutionStrategy,
) -> Result<(), ResolveError> {
for dependency in dependencies {
let PubGrubDependency {
package,
version,
parent: _,
url,
} = dependency;
let mut has_url = false;
if let Some(name) = package.name() {
// From the [`Requirement`] to [`PubGrubDependency`] conversion, we get a URL if the
// requirement was a URL requirement. `Urls` applies canonicalization to this and
// override URLs to both URL and registry requirements, which we then check for
// conflicts using [`ForkUrl`].
for url in urls.get_url(&self.env, name, url.as_ref(), git)? {
self.fork_urls.insert(name, url, &self.env)?;
has_url = true;
}
// If the package is pinned to an exact index, add it to the fork.
for index in indexes.get(name, &self.env) {
self.fork_indexes.insert(name, index, &self.env)?;
}
}
if let Some(name) = self.pubgrub.package_store[for_package]
.name_no_root()
.filter(|name| !workspace_members.contains(name))
{
debug!(
"Adding transitive dependency for {name}=={for_version}: {package}{version}"
);
} else {
// A dependency from the root package or `requirements.txt`.
debug!("Adding direct dependency: {package}{version}");
// Warn the user if a direct dependency lacks a lower bound in `--lowest` resolution.
let missing_lower_bound = version
.bounding_range()
.map(|(lowest, _highest)| lowest == Bound::Unbounded)
.unwrap_or(true);
let strategy_lowest = matches!(
resolution_strategy,
ResolutionStrategy::Lowest | ResolutionStrategy::LowestDirect(..)
);
if !has_url && missing_lower_bound && strategy_lowest {
warn_user_once!(
"The direct dependency `{name}` is unpinned. \
Consider setting a lower bound when using `--resolution lowest` \
or `--resolution lowest-direct` to avoid using outdated versions.",
name = package.name_no_root().unwrap(),
);
}
}
// Update the package priorities.
self.priorities.insert(package, version, &self.fork_urls);
}
Ok(())
}
/// Add the dependencies for the selected version of the current package.
fn add_package_version_dependencies(
&mut self,
for_package: Id<PubGrubPackage>,
for_version: &Version,
dependencies: Vec<PubGrubDependency>,
) {
let conflict = self.pubgrub.add_package_version_dependencies(
self.next,
for_version.clone(),
dependencies.into_iter().map(|dependency| {
let PubGrubDependency {
package,
version,
parent: _,
url: _,
} = dependency;
(package, version)
}),
);
// Conflict tracking: If the version was rejected due to its dependencies, record culprit
// and affected.
if let Some(incompatibility) = conflict {
self.record_conflict(for_package, Some(for_version), incompatibility);
}
}
fn record_conflict(
&mut self,
affected: Id<PubGrubPackage>,
version: Option<&Version>,
incompatibility: IncompId<PubGrubPackage, Ranges<Version>, UnavailableReason>,
) {
let mut culprit_is_real = false;
for (incompatible, _term) in self.pubgrub.incompatibility_store[incompatibility].iter() {
if incompatible == affected {
continue;
}
if self.pubgrub.package_store[affected].name()
== self.pubgrub.package_store[incompatible].name()
{
// Don't track conflicts between a marker package and the main package, when the
// marker is "copying" the obligations from the main package through conflicts.
continue;
}
culprit_is_real = true;
let culprit_count = self
.conflict_tracker
.culprit
.entry(incompatible)
.or_default();
*culprit_count += 1;
if *culprit_count == CONFLICT_THRESHOLD {
self.conflict_tracker.deprioritize.push(incompatible);
}
}
// Don't track conflicts between a marker package and the main package, when the
// marker is "copying" the obligations from the main package through conflicts.
if culprit_is_real {
if tracing::enabled!(Level::DEBUG) {
let incompatibility = self.pubgrub.incompatibility_store[incompatibility]
.iter()
.map(|(package, _term)| &self.pubgrub.package_store[package])
.join(", ");
if let Some(version) = version {
debug!(
"Recording dependency conflict of {}=={} from incompatibility of ({})",
self.pubgrub.package_store[affected], version, incompatibility
);
} else {
debug!(
"Recording unit propagation conflict of {} from incompatibility of ({})",
self.pubgrub.package_store[affected], incompatibility
);
}
}
let affected_count = self.conflict_tracker.affected.entry(self.next).or_default();
*affected_count += 1;
if *affected_count == CONFLICT_THRESHOLD {
self.conflict_tracker.prioritize.push(self.next);
}
}
}
fn add_unavailable_version(&mut self, version: Version, reason: UnavailableVersion) {
// Incompatible requires-python versions are special in that we track
// them as incompatible dependencies instead of marking the package version
// as unavailable directly.
if let UnavailableVersion::IncompatibleDist(
IncompatibleDist::Source(IncompatibleSource::RequiresPython(requires_python, kind))
| IncompatibleDist::Wheel(IncompatibleWheel::RequiresPython(requires_python, kind)),
) = reason
{
let package = &self.next;
let python = self.pubgrub.package_store.alloc(PubGrubPackage::from(
PubGrubPackageInner::Python(match kind {
PythonRequirementKind::Installed => PubGrubPython::Installed,
PythonRequirementKind::Target => PubGrubPython::Target,
}),
));
self.pubgrub
.add_incompatibility(Incompatibility::from_dependency(
*package,
Range::singleton(version.clone()),
(python, release_specifiers_to_ranges(requires_python)),
));
self.pubgrub
.partial_solution
.add_decision(self.next, version);
return;
}
self.pubgrub
.add_incompatibility(Incompatibility::custom_version(
self.next,
version.clone(),
UnavailableReason::Version(reason),
));
}
/// Subset the current markers with the new markers and update the python requirements fields
/// accordingly.
///
/// If the fork should be dropped (e.g., because its markers can never be true for its
/// Python requirement), then this returns `None`.
fn with_env(mut self, env: ResolverEnvironment) -> Self {
self.env = env;
// If the fork contains a narrowed Python requirement, apply it.
if let Some(req) = self.env.narrow_python_requirement(&self.python_requirement) {
debug!("Narrowed `requires-python` bound to: {}", req.target());
self.python_requirement = req;
}
self
}
/// Returns the URL or index for a package and version.
///
/// In practice, exactly one of the returned values will be `Some`.
fn source(
&self,
name: &PackageName,
version: &Version,
) -> (Option<&VerbatimParsedUrl>, Option<&IndexUrl>) {
let url = self.fork_urls.get(name);
let index = url
.is_none()
.then(|| {
self.pins
.get(name, version)
.expect("Every package should be pinned")
.index()
})
.flatten();
(url, index)
}
fn into_resolution(self) -> Resolution {
let solution: FxHashMap<_, _> = self.pubgrub.partial_solution.extract_solution().collect();
let edge_count: usize = solution
.keys()
.map(|package| self.pubgrub.incompatibilities[package].len())
.sum();
let mut edges: Vec<ResolutionDependencyEdge> = Vec::with_capacity(edge_count);
for (package, self_version) in &solution {
for id in &self.pubgrub.incompatibilities[package] {
let pubgrub::Kind::FromDependencyOf(
self_package,
ref self_range,
dependency_package,
ref dependency_range,
) = self.pubgrub.incompatibility_store[*id].kind
else {
continue;
};
if *package != self_package {
continue;
}
if !self_range.contains(self_version) {
continue;
}
let Some(dependency_version) = solution.get(&dependency_package) else {
continue;
};
if !dependency_range.contains(dependency_version) {
continue;
}
let self_package = &self.pubgrub.package_store[self_package];
let dependency_package = &self.pubgrub.package_store[dependency_package];
let (self_name, self_extra, self_group) = match &**self_package {
PubGrubPackageInner::Package {
name: self_name,
extra: self_extra,
group: self_group,
marker: _,
} => (Some(self_name), self_extra.as_ref(), self_group.as_ref()),
PubGrubPackageInner::Root(_) => (None, None, None),
_ => continue,
};
let (self_url, self_index) = self_name
.map(|self_name| self.source(self_name, self_version))
.unwrap_or((None, None));
match **dependency_package {
PubGrubPackageInner::Package {
name: ref dependency_name,
extra: ref dependency_extra,
group: ref dependency_dev,
marker: ref dependency_marker,
} => {
debug_assert!(
dependency_extra.is_none(),
"Packages should depend on an extra proxy"
);
debug_assert!(
dependency_dev.is_none(),
"Packages should depend on a group proxy"
);
// Ignore self-dependencies (e.g., `tensorflow-macos` depends on `tensorflow-macos`),
// but allow groups to depend on other groups, or on the package itself.
if self_group.is_none() {
if self_name == Some(dependency_name) {
continue;
}
}
let (to_url, to_index) = self.source(dependency_name, dependency_version);
let edge = ResolutionDependencyEdge {
from: self_name.cloned(),
from_version: self_version.clone(),
from_url: self_url.cloned(),
from_index: self_index.cloned(),
from_extra: self_extra.cloned(),
from_group: self_group.cloned(),
to: dependency_name.clone(),
to_version: dependency_version.clone(),
to_url: to_url.cloned(),
to_index: to_index.cloned(),
to_extra: dependency_extra.clone(),
to_group: dependency_dev.clone(),
marker: *dependency_marker,
};
edges.push(edge);
}
PubGrubPackageInner::Marker {
name: ref dependency_name,
marker: ref dependency_marker,
} => {
// Ignore self-dependencies (e.g., `tensorflow-macos` depends on `tensorflow-macos`),
// but allow groups to depend on other groups, or on the package itself.
if self_group.is_none() {
if self_name == Some(dependency_name) {
continue;
}
}
let (to_url, to_index) = self.source(dependency_name, dependency_version);
let edge = ResolutionDependencyEdge {
from: self_name.cloned(),
from_version: self_version.clone(),
from_url: self_url.cloned(),
from_index: self_index.cloned(),
from_extra: self_extra.cloned(),
from_group: self_group.cloned(),
to: dependency_name.clone(),
to_version: dependency_version.clone(),
to_url: to_url.cloned(),
to_index: to_index.cloned(),
to_extra: None,
to_group: None,
marker: *dependency_marker,
};
edges.push(edge);
}
PubGrubPackageInner::Extra {
name: ref dependency_name,
extra: ref dependency_extra,
marker: ref dependency_marker,
} => {
if self_group.is_none() {
debug_assert!(
self_name != Some(dependency_name),
"Extras should be flattened"
);
}
let (to_url, to_index) = self.source(dependency_name, dependency_version);
// Insert an edge from the dependent package to the extra package.
let edge = ResolutionDependencyEdge {
from: self_name.cloned(),
from_version: self_version.clone(),
from_url: self_url.cloned(),
from_index: self_index.cloned(),
from_extra: self_extra.cloned(),
from_group: self_group.cloned(),
to: dependency_name.clone(),
to_version: dependency_version.clone(),
to_url: to_url.cloned(),
to_index: to_index.cloned(),
to_extra: Some(dependency_extra.clone()),
to_group: None,
marker: *dependency_marker,
};
edges.push(edge);
// Insert an edge from the dependent package to the base package.
let edge = ResolutionDependencyEdge {
from: self_name.cloned(),
from_version: self_version.clone(),
from_url: self_url.cloned(),
from_index: self_index.cloned(),
from_extra: self_extra.cloned(),
from_group: self_group.cloned(),
to: dependency_name.clone(),
to_version: dependency_version.clone(),
to_url: to_url.cloned(),
to_index: to_index.cloned(),
to_extra: None,
to_group: None,
marker: *dependency_marker,
};
edges.push(edge);
}
PubGrubPackageInner::Group {
name: ref dependency_name,
group: ref dependency_group,
marker: ref dependency_marker,
} => {
debug_assert!(
self_name != Some(dependency_name),
"Groups should be flattened"
);
let (to_url, to_index) = self.source(dependency_name, dependency_version);
// Add an edge from the dependent package to the dev package, but _not_ the
// base package.
let edge = ResolutionDependencyEdge {
from: self_name.cloned(),
from_version: self_version.clone(),
from_url: self_url.cloned(),
from_index: self_index.cloned(),
from_extra: self_extra.cloned(),
from_group: self_group.cloned(),
to: dependency_name.clone(),
to_version: dependency_version.clone(),
to_url: to_url.cloned(),
to_index: to_index.cloned(),
to_extra: None,
to_group: Some(dependency_group.clone()),
marker: *dependency_marker,
};
edges.push(edge);
}
_ => {}
}
}
}
let nodes = solution
.into_iter()
.filter_map(|(package, version)| {
if let PubGrubPackageInner::Package {
name,
extra,
group,
marker: MarkerTree::TRUE,
} = &*self.pubgrub.package_store[package]
{
let (url, index) = self.source(name, &version);
Some((
ResolutionPackage {
name: name.clone(),
extra: extra.clone(),
dev: group.clone(),
url: url.cloned(),
index: index.cloned(),
},
version,
))
} else {
None
}
})
.collect();
Resolution {
nodes,
edges,
pins: self.pins,
env: self.env,
}
}
}
/// The resolution from a single fork including the virtual packages and the edges between them.
#[derive(Debug)]
pub(crate) struct Resolution {
pub(crate) nodes: FxHashMap<ResolutionPackage, Version>,
/// The directed connections between the nodes, where the marker is the node weight. We don't
/// store the requirement itself, but it can be retrieved from the package metadata.
pub(crate) edges: Vec<ResolutionDependencyEdge>,
/// Map each package name, version tuple from `packages` to a distribution.
pub(crate) pins: FilePins,
/// The environment setting this resolution was found under.
pub(crate) env: ResolverEnvironment,
}
/// Package representation we used during resolution where each extra and also the dev-dependencies
/// group are their own package.
#[derive(Clone, Debug, Eq, Hash, PartialEq)]
pub(crate) struct ResolutionPackage {
pub(crate) name: PackageName,
pub(crate) extra: Option<ExtraName>,
pub(crate) dev: Option<GroupName>,
/// For registry packages, this is `None`; otherwise, the direct URL of the distribution.
pub(crate) url: Option<VerbatimParsedUrl>,
/// For URL packages, this is `None`; otherwise, the index URL of the distribution.
pub(crate) index: Option<IndexUrl>,
}
/// The `from_` fields and the `to_` fields allow mapping to the originating and target
/// [`ResolutionPackage`] respectively. The `marker` is the edge weight.
#[derive(Clone, Debug, Eq, Hash, PartialEq)]
pub(crate) struct ResolutionDependencyEdge {
/// This value is `None` if the dependency comes from the root package.
pub(crate) from: Option<PackageName>,
pub(crate) from_version: Version,
pub(crate) from_url: Option<VerbatimParsedUrl>,
pub(crate) from_index: Option<IndexUrl>,
pub(crate) from_extra: Option<ExtraName>,
pub(crate) from_group: Option<GroupName>,
pub(crate) to: PackageName,
pub(crate) to_version: Version,
pub(crate) to_url: Option<VerbatimParsedUrl>,
pub(crate) to_index: Option<IndexUrl>,
pub(crate) to_extra: Option<ExtraName>,
pub(crate) to_group: Option<GroupName>,
pub(crate) marker: MarkerTree,
}
impl ResolutionDependencyEdge {
pub(crate) fn universal_marker(&self) -> UniversalMarker {
// We specifically do not account for conflict
// markers here. Instead, those are computed via
// a traversal on the resolution graph.
UniversalMarker::new(self.marker, ConflictMarker::TRUE)
}
}
/// Fetch the metadata for an item
#[derive(Debug)]
#[allow(clippy::large_enum_variant)]
pub(crate) enum Request {
/// A request to fetch the metadata for a package.
Package(PackageName, Option<IndexMetadata>),
/// A request to fetch the metadata for a built or source distribution.
Dist(Dist),
/// A request to fetch the metadata from an already-installed distribution.
Installed(InstalledDist),
/// A request to pre-fetch the metadata for a package and the best-guess distribution.
Prefetch(PackageName, Range<Version>, PythonRequirement),
}
impl<'a> From<ResolvedDistRef<'a>> for Request {
fn from(dist: ResolvedDistRef<'a>) -> Self {
// N.B. This is almost identical to `ResolvedDistRef::to_owned`, but
// creates a `Request` instead of a `ResolvedDist`. There's probably
// some room for DRYing this up a bit. The obvious way would be to
// add a method to create a `Dist`, but a `Dist` cannot be represented
// as an installed dist.
match dist {
ResolvedDistRef::InstallableRegistrySourceDist { sdist, prioritized } => {
// This is okay because we're only here if the prioritized dist
// has an sdist, so this always succeeds.
let source = prioritized.source_dist().expect("a source distribution");
assert_eq!(
(&sdist.name, &sdist.version),
(&source.name, &source.version),
"expected chosen sdist to match prioritized sdist"
);
Self::Dist(Dist::Source(SourceDist::Registry(source)))
}
ResolvedDistRef::InstallableRegistryBuiltDist {
wheel, prioritized, ..
} => {
assert_eq!(
Some(&wheel.filename),
prioritized.best_wheel().map(|(wheel, _)| &wheel.filename),
"expected chosen wheel to match best wheel"
);
// This is okay because we're only here if the prioritized dist
// has at least one wheel, so this always succeeds.
let built = prioritized.built_dist().expect("at least one wheel");
Self::Dist(Dist::Built(BuiltDist::Registry(built)))
}
ResolvedDistRef::Installed { dist } => Self::Installed(dist.clone()),
}
}
}
impl Display for Request {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
match self {
Self::Package(package_name, _) => {
write!(f, "Versions {package_name}")
}
Self::Dist(dist) => {
write!(f, "Metadata {dist}")
}
Self::Installed(dist) => {
write!(f, "Installed metadata {dist}")
}
Self::Prefetch(package_name, range, _) => {
write!(f, "Prefetch {package_name} {range}")
}
}
}
}
#[derive(Debug)]
#[allow(clippy::large_enum_variant)]
enum Response {
/// The returned metadata for a package hosted on a registry.
Package(PackageName, Option<IndexUrl>, VersionsResponse),
/// The returned metadata for a distribution.
Dist {
dist: Dist,
metadata: MetadataResponse,
},
/// The returned metadata for an already-installed distribution.
Installed {
dist: InstalledDist,
metadata: MetadataResponse,
},
}
/// Information about the dependencies for a particular package.
///
/// This effectively distills the dependency metadata of a package down into
/// its pubgrub specific constituent parts: each dependency package has a range
/// of possible versions.
enum Dependencies {
/// Package dependencies are not available.
Unavailable(UnavailableVersion),
/// Container for all available package versions.
///
/// Note that in universal mode, it is possible and allowed for multiple
/// `PubGrubPackage` values in this list to have the same package name.
/// These conflicts are resolved via `Dependencies::fork`.
Available(Vec<PubGrubDependency>),
/// Dependencies that should never result in a fork.
///
/// For example, the dependencies of a `Marker` package will have the
/// same name and version, but differ according to marker expressions.
/// But we never want this to result in a fork.
Unforkable(Vec<PubGrubDependency>),
}
impl Dependencies {
/// Turn this flat list of dependencies into a potential set of forked
/// groups of dependencies.
///
/// A fork *only* occurs when there are multiple dependencies with the same
/// name *and* those dependency specifications have corresponding marker
/// expressions that are completely disjoint with one another.
fn fork(
self,
env: &ResolverEnvironment,
python_requirement: &PythonRequirement,
conflicts: &Conflicts,
) -> ForkedDependencies {
let deps = match self {
Self::Available(deps) => deps,
Self::Unforkable(deps) => return ForkedDependencies::Unforked(deps),
Self::Unavailable(err) => return ForkedDependencies::Unavailable(err),
};
let mut name_to_deps: BTreeMap<PackageName, Vec<PubGrubDependency>> = BTreeMap::new();
for dep in deps {
let name = dep
.package
.name()
.expect("dependency always has a name")
.clone();
name_to_deps.entry(name).or_default().push(dep);
}
let Forks {
mut forks,
diverging_packages,
} = Forks::new(name_to_deps, env, python_requirement, conflicts);
if forks.is_empty() {
ForkedDependencies::Unforked(vec![])
} else if forks.len() == 1 {
ForkedDependencies::Unforked(forks.pop().unwrap().dependencies)
} else {
ForkedDependencies::Forked {
forks,
diverging_packages: diverging_packages.into_iter().collect(),
}
}
}
}
/// Information about the (possibly forked) dependencies for a particular
/// package.
///
/// This is like `Dependencies` but with an extra variant that only occurs when
/// a `Dependencies` list has multiple dependency specifications with the same
/// name and non-overlapping marker expressions (i.e., a fork occurs).
#[derive(Debug)]
enum ForkedDependencies {
/// Package dependencies are not available.
Unavailable(UnavailableVersion),
/// No forking occurred.
///
/// This is the same as `Dependencies::Available`.
Unforked(Vec<PubGrubDependency>),
/// Forked containers for all available package versions.
///
/// Note that there is always at least two forks. If there would
/// be fewer than 2 forks, then there is no fork at all and the
/// `Unforked` variant is used instead.
Forked {
forks: Vec<Fork>,
/// The package(s) with different requirements for disjoint markers.
diverging_packages: Vec<PackageName>,
},
}
/// A list of forks determined from the dependencies of a single package.
///
/// Any time a marker expression is seen that is not true for all possible
/// marker environments, it is possible for it to introduce a new fork.
#[derive(Debug, Default)]
struct Forks {
/// The forks discovered among the dependencies.
forks: Vec<Fork>,
/// The package(s) that provoked at least one additional fork.
diverging_packages: BTreeSet<PackageName>,
}
impl Forks {
fn new(
name_to_deps: BTreeMap<PackageName, Vec<PubGrubDependency>>,
env: &ResolverEnvironment,
python_requirement: &PythonRequirement,
conflicts: &Conflicts,
) -> Self {
let python_marker = python_requirement.to_marker_tree();
let mut forks = vec![Fork::new(env.clone())];
let mut diverging_packages = BTreeSet::new();
for (name, mut deps) in name_to_deps {
assert!(!deps.is_empty(), "every name has at least one dependency");
// We never fork if there's only one dependency
// specification for a given package name. This particular
// strategy results in a "conservative" approach to forking
// that gives up correctness in some cases in exchange for
// more limited forking. More limited forking results in
// simpler-and-easier-to-understand lock files and faster
// resolving. The correctness we give up manifests when
// two transitive non-sibling dependencies conflict. In
// that case, we don't detect the fork ahead of time (at
// present).
if let [dep] = deps.as_slice() {
// There's one exception: if the requirement increases the minimum-supported Python
// version, we also fork in order to respect that minimum in the subsequent
// resolution.
//
// For example, given `requires-python = ">=3.7"` and `uv ; python_version >= "3.8"`,
// where uv itself only supports Python 3.8 and later, we need to fork to ensure
// that the resolution can find a solution.
if marker::requires_python(dep.package.marker())
.is_none_or(|bound| !python_requirement.raises(&bound))
{
let dep = deps.pop().unwrap();
let marker = dep.package.marker();
for fork in &mut forks {
if fork.env.included_by_marker(marker) {
fork.add_dependency(dep.clone());
}
}
continue;
}
} else {
// If all dependencies have the same markers, we should also avoid forking.
if let Some(dep) = deps.first() {
let marker = dep.package.marker();
if deps.iter().all(|dep| marker == dep.package.marker()) {
// Unless that "same marker" is a Python requirement that is stricter than
// the current Python requirement. In that case, we need to fork to respect
// the stricter requirement.
if marker::requires_python(marker)
.is_none_or(|bound| !python_requirement.raises(&bound))
{
for dep in deps {
for fork in &mut forks {
if fork.env.included_by_marker(marker) {
fork.add_dependency(dep.clone());
}
}
}
continue;
}
}
}
}
for dep in deps {
let mut forker = match ForkingPossibility::new(env, &dep) {
ForkingPossibility::Possible(forker) => forker,
ForkingPossibility::DependencyAlwaysExcluded => {
// If the markers can never be satisfied by the parent
// fork, then we can drop this dependency unceremoniously.
continue;
}
ForkingPossibility::NoForkingPossible => {
// Or, if the markers are always true, then we just
// add the dependency to every fork unconditionally.
for fork in &mut forks {
fork.add_dependency(dep.clone());
}
continue;
}
};
// Otherwise, we *should* need to add a new fork...
diverging_packages.insert(name.clone());
let mut new = vec![];
for fork in std::mem::take(&mut forks) {
let Some((remaining_forker, envs)) = forker.fork(&fork.env) else {
new.push(fork);
continue;
};
forker = remaining_forker;
for fork_env in envs {
let mut new_fork = fork.clone();
new_fork.set_env(fork_env);
// We only add the dependency to this fork if it
// satisfies the fork's markers. Some forks are
// specifically created to exclude this dependency,
// so this isn't always true!
if forker.included(&new_fork.env) {
new_fork.add_dependency(dep.clone());
}
// Filter out any forks we created that are disjoint with our
// Python requirement.
if new_fork.env.included_by_marker(python_marker) {
new.push(new_fork);
}
}
}
forks = new;
}
}
// When there is a conflicting group configuration, we need
// to potentially add more forks. Each fork added contains an
// exclusion list of conflicting groups where dependencies with
// the corresponding package and extra name are forcefully
// excluded from that group.
//
// We specifically iterate on conflicting groups and
// potentially re-generate all forks for each one. We do it
// this way in case there are multiple sets of conflicting
// groups that impact the forks here.
//
// For example, if we have conflicting groups {x1, x2} and {x3,
// x4}, we need to make sure the forks generated from one set
// also account for the other set.
for set in conflicts.iter() {
let mut new = vec![];
for fork in std::mem::take(&mut forks) {
let mut has_conflicting_dependency = false;
for item in set.iter() {
if fork.contains_conflicting_item(item.as_ref()) {
has_conflicting_dependency = true;
diverging_packages.insert(item.package().clone());
break;
}
}
if !has_conflicting_dependency {
new.push(fork);
continue;
}
// Create a fork that excludes ALL conflicts.
if let Some(fork_none) = fork.clone().filter(set.iter().cloned().map(Err)) {
new.push(fork_none);
}
// Now create a fork for each conflicting group, where
// that fork excludes every *other* conflicting group.
//
// So if we have conflicting extras foo, bar and baz,
// then this creates three forks: one that excludes
// {foo, bar}, one that excludes {foo, baz} and one
// that excludes {bar, baz}.
for (i, _) in set.iter().enumerate() {
let fork_allows_group = fork.clone().filter(
set.iter()
.cloned()
.enumerate()
.map(|(j, group)| if i == j { Ok(group) } else { Err(group) }),
);
if let Some(fork_allows_group) = fork_allows_group {
new.push(fork_allows_group);
}
}
}
forks = new;
}
Self {
forks,
diverging_packages,
}
}
}
/// A single fork in a list of dependencies.
///
/// A fork corresponds to the full list of dependencies for a package,
/// but with any conflicting dependency specifications omitted. For
/// example, if we have `a<2 ; sys_platform == 'foo'` and `a>=2 ;
/// sys_platform == 'bar'`, then because the dependency specifications
/// have the same name and because the marker expressions are disjoint,
/// a fork occurs. One fork will contain `a<2` but not `a>=2`, while
/// the other fork will contain `a>=2` but not `a<2`.
#[derive(Clone, Debug)]
struct Fork {
/// The list of dependencies for this fork, guaranteed to be conflict
/// free. (i.e., There are no two packages with the same name with
/// non-overlapping marker expressions.)
///
/// Note that callers shouldn't mutate this sequence directly. Instead,
/// they should use `add_forked_package` or `add_nonfork_package`. Namely,
/// it should be impossible for a package with a marker expression that is
/// disjoint from the marker expression on this fork to be added.
dependencies: Vec<PubGrubDependency>,
/// The conflicting groups in this fork.
///
/// This exists to make some access patterns more efficient. Namely,
/// it makes it easy to check whether there's a dependency with a
/// particular conflicting group in this fork.
conflicts: crate::FxHashbrownSet<ConflictItem>,
/// The resolver environment for this fork.
///
/// Principally, this corresponds to the markers in this for. So in the
/// example above, the `a<2` fork would have `sys_platform == 'foo'`, while
/// the `a>=2` fork would have `sys_platform == 'bar'`.
///
/// If this fork was generated from another fork, then this *includes*
/// the criteria from its parent. i.e., Its marker expression represents
/// the intersection of the marker expression from its parent and any
/// additional marker expression generated by addition forking based on
/// conflicting dependency specifications.
env: ResolverEnvironment,
}
impl Fork {
/// Create a new fork with no dependencies with the given resolver
/// environment.
fn new(env: ResolverEnvironment) -> Self {
Self {
dependencies: vec![],
conflicts: crate::FxHashbrownSet::default(),
env,
}
}
/// Add a dependency to this fork.
fn add_dependency(&mut self, dep: PubGrubDependency) {
if let Some(conflicting_item) = dep.conflicting_item() {
self.conflicts.insert(conflicting_item.to_owned());
}
self.dependencies.push(dep);
}
/// Sets the resolver environment to the one given.
///
/// Any dependency in this fork that does not satisfy the given environment
/// is removed.
fn set_env(&mut self, env: ResolverEnvironment) {
self.env = env;
self.dependencies.retain(|dep| {
let marker = dep.package.marker();
if self.env.included_by_marker(marker) {
return true;
}
if let Some(conflicting_item) = dep.conflicting_item() {
self.conflicts.remove(&conflicting_item);
}
false
});
}
/// Returns true if any of the dependencies in this fork contain a
/// dependency with the given package and extra values.
fn contains_conflicting_item(&self, item: ConflictItemRef<'_>) -> bool {
self.conflicts.contains(&item)
}
/// Include or Exclude the given groups from this fork.
///
/// This removes all dependencies matching the given conflicting groups.
///
/// If the exclusion rules would result in a fork with an unsatisfiable
/// resolver environment, then this returns `None`.
fn filter(
mut self,
rules: impl IntoIterator<Item = Result<ConflictItem, ConflictItem>>,
) -> Option<Self> {
self.env = self.env.filter_by_group(rules)?;
self.dependencies.retain(|dep| {
let Some(conflicting_item) = dep.conflicting_item() else {
return true;
};
if self.env.included_by_group(conflicting_item) {
return true;
}
match conflicting_item.kind() {
// We should not filter entire projects unless they're a top-level dependency
// Otherwise, we'll fail to solve for children of the project, like extras
ConflictKindRef::Project => {
if dep.parent.is_some() {
return true;
}
}
ConflictKindRef::Group(_) => {}
ConflictKindRef::Extra(_) => {}
}
self.conflicts.remove(&conflicting_item);
false
});
Some(self)
}
/// Compare forks, preferring forks with g `requires-python` requirements.
fn cmp_requires_python(&self, other: &Self) -> Ordering {
// A higher `requires-python` requirement indicates a _higher-priority_ fork.
//
// This ordering ensures that we prefer choosing the highest version for each fork based on
// its `requires-python` requirement.
//
// The reverse would prefer choosing fewer versions, at the cost of using older package
// versions on newer Python versions. For example, if reversed, we'd prefer to solve `<3.7
// before solving `>=3.7`, since the resolution produced by the former might work for the
// latter, but the inverse is unlikely to be true.
let self_bound = self.env.requires_python().unwrap_or_default();
let other_bound = other.env.requires_python().unwrap_or_default();
self_bound.lower().cmp(other_bound.lower())
}
/// Compare forks, preferring forks with upper bounds.
fn cmp_upper_bounds(&self, other: &Self) -> Ordering {
// We'd prefer to solve `numpy <= 2` before solving `numpy >= 1`, since the resolution
// produced by the former might work for the latter, but the inverse is unlikely to be true
// due to maximum version selection. (Selecting `numpy==2.0.0` would satisfy both forks, but
// selecting the latest `numpy` would not.)
let self_upper_bounds = self
.dependencies
.iter()
.filter(|dep| {
dep.version
.bounding_range()
.is_some_and(|(_, upper)| !matches!(upper, Bound::Unbounded))
})
.count();
let other_upper_bounds = other
.dependencies
.iter()
.filter(|dep| {
dep.version
.bounding_range()
.is_some_and(|(_, upper)| !matches!(upper, Bound::Unbounded))
})
.count();
self_upper_bounds.cmp(&other_upper_bounds)
}
}
impl Eq for Fork {}
impl PartialEq for Fork {
fn eq(&self, other: &Self) -> bool {
self.dependencies == other.dependencies && self.env == other.env
}
}
#[derive(Debug, Clone)]
pub(crate) struct VersionFork {
/// The environment to use in the fork.
env: ResolverEnvironment,
/// The initial package to select in the fork.
id: Id<PubGrubPackage>,
/// The initial version to set for the selected package in the fork.
version: Option<Version>,
}
/// Enrich a [`ResolveError`] with additional information about why a given package was included.
fn enrich_dependency_error(
error: ResolveError,
id: Id<PubGrubPackage>,
version: &Version,
pubgrub: &State<UvDependencyProvider>,
) -> ResolveError {
let Some(name) = pubgrub.package_store[id].name_no_root() else {
return error;
};
let chain = DerivationChainBuilder::from_state(id, version, pubgrub).unwrap_or_default();
ResolveError::Dependencies(Box::new(error), name.clone(), version.clone(), chain)
}
/// Compute the set of markers for which a package is known to be relevant.
fn find_environments(id: Id<PubGrubPackage>, state: &State<UvDependencyProvider>) -> MarkerTree {
let package = &state.package_store[id];
if package.is_root() {
return MarkerTree::TRUE;
}
// Retrieve the incompatibilities for the current package.
let Some(incompatibilities) = state.incompatibilities.get(&id) else {
return MarkerTree::FALSE;
};
// Find all dependencies on the current package.
let mut marker = MarkerTree::FALSE;
for index in incompatibilities {
let incompat = &state.incompatibility_store[*index];
if let Kind::FromDependencyOf(id1, _, id2, _) = &incompat.kind {
if id == *id2 {
marker.or({
let mut marker = package.marker();
marker.and(find_environments(*id1, state));
marker
});
}
}
}
marker
}
#[derive(Debug, Default, Clone)]
struct ConflictTracker {
/// How often a decision on the package was discarded due to another package decided earlier.
affected: FxHashMap<Id<PubGrubPackage>, usize>,
/// Package(s) to be prioritized after the next unit propagation
///
/// Distilled from `affected` for fast checking in the hot loop.
prioritize: Vec<Id<PubGrubPackage>>,
/// How often a package was decided earlier and caused another package to be discarded.
culprit: FxHashMap<Id<PubGrubPackage>, usize>,
/// Package(s) to be de-prioritized after the next unit propagation
///
/// Distilled from `culprit` for fast checking in the hot loop.
deprioritize: Vec<Id<PubGrubPackage>>,
}