roc/crates/compiler/load_internal/src/work.rs
2022-10-02 21:38:03 -05:00

579 lines
21 KiB
Rust

use roc_collections::{
all::{MutMap, MutSet},
VecMap,
};
use roc_module::symbol::{ModuleId, PackageQualified};
use std::collections::hash_map::Entry;
/// NOTE the order of definition of the phases is used by the ord instance
/// make sure they are ordered from first to last!
#[derive(PartialEq, Eq, PartialOrd, Ord, Hash, Clone, Copy, Debug)]
pub enum Phase {
LoadHeader,
Parse,
CanonicalizeAndConstrain,
SolveTypes,
FindSpecializations,
MakeSpecializations,
}
/// NOTE keep up to date manually, from ParseAndGenerateConstraints to the highest phase we support
const PHASES: [Phase; 6] = [
Phase::LoadHeader,
Phase::Parse,
Phase::CanonicalizeAndConstrain,
Phase::SolveTypes,
Phase::FindSpecializations,
Phase::MakeSpecializations,
];
#[derive(Debug)]
enum Status {
NotStarted,
Pending,
Done,
}
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
enum Job<'a> {
Step(ModuleId, Phase),
ResolveShorthand(&'a str),
}
#[derive(Default, Debug)]
struct MakeSpecializationInfo {
/// Modules to make specializations for after they are made for this module
succ: MutSet<ModuleId>,
/// Whether this module depends on specializations being made for another module
has_pred: bool,
}
#[derive(Debug)]
struct MakeSpecializationsDependents(MutMap<ModuleId, MakeSpecializationInfo>);
impl MakeSpecializationsDependents {
/// Gets the info entry for a module, or creates a default one.
fn entry(&mut self, module_id: ModuleId) -> &mut MakeSpecializationInfo {
self.0.entry(module_id).or_default()
}
fn mark_has_pred(&mut self, module_id: ModuleId) {
self.entry(module_id).has_pred = true;
}
fn add_succ(&mut self, module_id: ModuleId, succ: impl IntoIterator<Item = ModuleId>) {
// Add make specialization dependents
let entry = self.entry(module_id);
debug_assert!(
entry.succ.is_empty(),
"already added successors for module '{:?}'",
module_id
);
entry.succ.extend(succ.into_iter());
// The module for derives implicitly depends on every other module
entry.succ.insert(ModuleId::DERIVED_GEN);
}
}
impl Default for MakeSpecializationsDependents {
fn default() -> Self {
let mut map: MutMap<ModuleId, MakeSpecializationInfo> = Default::default();
// The module for derives is always at the base as the last module to specialize
map.insert(
ModuleId::DERIVED_GEN,
MakeSpecializationInfo {
succ: Default::default(),
// NB: invariant - the derived module depends on every other module, and
// work can never be initiated for just the derived module!
has_pred: true,
},
);
Self(map)
}
}
#[derive(Debug)]
pub struct Dependencies<'a> {
waiting_for: MutMap<Job<'a>, MutSet<Job<'a>>>,
notifies: MutMap<Job<'a>, MutSet<Job<'a>>>,
status: MutMap<Job<'a>, Status>,
make_specializations_dependents: MakeSpecializationsDependents,
}
pub struct DepCycle {
pub cycle: Vec<ModuleId>,
}
impl<'a> Dependencies<'a> {
pub fn new(goal_phase: Phase) -> Self {
let mut deps = Self {
waiting_for: Default::default(),
notifies: Default::default(),
status: Default::default(),
make_specializations_dependents: Default::default(),
};
if goal_phase >= Phase::MakeSpecializations {
// Module for deriving is always implicitly loaded into the work graph, but it only
// comes into play for make specializations.
deps.add_to_status_for_phase(ModuleId::DERIVED_GEN, Phase::MakeSpecializations);
}
deps
}
/// Add all the dependencies for a module, return (module, phase) pairs that can make progress
pub fn add_module(
&mut self,
module_id: ModuleId,
dependencies: &MutSet<PackageQualified<'a, ModuleId>>,
goal_phase: Phase,
) -> Result<MutSet<(ModuleId, Phase)>, DepCycle> {
use Phase::*;
let mut output = MutSet::default();
for dep in dependencies.iter() {
// Do a BFS to check if we have an import cycle; if we do, calculate the cycle and
// report the error. Although the worst case here is that we do a quadratic amount of
// work for all modules added in a batch compilation, in practice, most dependencies
// inserted here have not been seen by [Dependencies] yet, so their import chain is
// size 0.
if self.has_import_dependency(*dep.as_inner(), module_id) {
let mut rev_cycle = self.calculate_reverse_import_path(*dep.as_inner(), module_id);
rev_cycle.push(module_id);
rev_cycle.reverse();
let cycle = rev_cycle;
return Err(DepCycle { cycle });
}
let has_package_dependency = self.add_package_dependency(dep, Phase::LoadHeader);
let dep = *dep.as_inner();
if !has_package_dependency {
// loading can start immediately on this dependency
output.insert((dep, Phase::LoadHeader));
}
// to parse and generate constraints, the headers of all dependencies must be loaded!
// otherwise, we don't know whether an imported symbol is actually exposed
self.add_dependency_help(module_id, dep, Phase::Parse, Phase::LoadHeader);
// to canonicalize a module, all its dependencies must be canonicalized
self.add_dependency(module_id, dep, Phase::CanonicalizeAndConstrain);
// to typecheck a module, all its dependencies must be type checked already
self.add_dependency(module_id, dep, Phase::SolveTypes);
if goal_phase >= FindSpecializations {
self.add_dependency(module_id, dep, Phase::FindSpecializations);
}
if goal_phase >= MakeSpecializations {
self.add_dependency(dep, module_id, Phase::MakeSpecializations);
// The module for derives implicitly depends on every other module
self.add_dependency(ModuleId::DERIVED_GEN, module_id, Phase::MakeSpecializations);
// `dep` depends on `module_id` making specializations first
self.make_specializations_dependents.mark_has_pred(dep);
}
}
// Add "make specialization" dependents. Even if we're not targeting making
// specializations right now, we may re-enter to do so later.
self.make_specializations_dependents
.add_succ(module_id, dependencies.iter().map(|dep| *dep.as_inner()));
// add dependencies for self
// phase i + 1 of a file always depends on phase i being completed
{
let mut i = 0;
while PHASES[i] < goal_phase {
self.add_dependency_help(module_id, module_id, PHASES[i + 1], PHASES[i]);
i += 1;
}
}
self.add_to_status_for_all_phases(module_id, goal_phase);
Ok(output)
}
fn has_import_dependency(&self, module_id: ModuleId, target: ModuleId) -> bool {
if module_id.is_builtin() {
return false;
}
let mut stack = vec![module_id];
while let Some(module) = stack.pop() {
if module.is_builtin() {
continue;
}
if module == target {
return true;
}
if let Some(dependencies) = self.make_specializations_dependents.0.get(&module) {
stack.extend(dependencies.succ.iter());
}
}
false
}
fn calculate_reverse_import_path(
&self,
module_id: ModuleId,
target: ModuleId,
) -> Vec<ModuleId> {
let mut stack = vec![module_id];
let mut backlinks = VecMap::with_capacity(16);
let mut found_import = false;
while let Some(module) = stack.pop() {
if module == target {
found_import = true;
break;
}
if let Some(dependencies) = self.make_specializations_dependents.0.get(&module) {
for import in dependencies.succ.iter() {
backlinks.insert(*import, module);
stack.push(*import);
}
}
}
if !found_import {
roc_error_macros::internal_error!("calculate_import_path should only be called when an import path is known to exist!");
}
let mut source = target;
let mut rev_path = vec![source];
while let Some(&parent) = backlinks.get(&source) {
rev_path.push(parent);
source = parent;
}
rev_path
}
/// Adds a status for the given module for exactly one phase.
fn add_to_status_for_phase(&mut self, module_id: ModuleId, phase: Phase) {
if let Entry::Vacant(entry) = self.status.entry(Job::Step(module_id, phase)) {
entry.insert(Status::NotStarted);
}
}
/// Adds a status for the given module for all phases up to and including the goal phase.
fn add_to_status_for_all_phases(&mut self, module_id: ModuleId, goal_phase: Phase) {
for phase in PHASES.iter() {
if *phase > goal_phase {
break;
}
self.add_to_status_for_phase(module_id, *phase);
}
}
/// Propagate a notification, return (module, phase) pairs that can make progress
pub fn notify(&mut self, module_id: ModuleId, phase: Phase) -> MutSet<(ModuleId, Phase)> {
self.notify_help(Job::Step(module_id, phase))
}
/// Propagate a notification, return (module, phase) pairs that can make progress
pub fn notify_package(&mut self, shorthand: &'a str) -> MutSet<(ModuleId, Phase)> {
self.notify_help(Job::ResolveShorthand(shorthand))
}
fn notify_help(&mut self, key: Job<'a>) -> MutSet<(ModuleId, Phase)> {
self.status.insert(key.clone(), Status::Done);
let mut output = MutSet::default();
if let Some(to_notify) = self.notifies.get(&key) {
for notify_key in to_notify {
let mut is_empty = false;
if let Some(waiting_for_pairs) = self.waiting_for.get_mut(notify_key) {
waiting_for_pairs.remove(&key);
is_empty = waiting_for_pairs.is_empty();
}
if is_empty {
self.waiting_for.remove(notify_key);
if let Job::Step(module, phase) = *notify_key {
output.insert((module, phase));
}
}
}
}
self.notifies.remove(&key);
output
}
fn add_package_dependency(
&mut self,
module: &PackageQualified<'a, ModuleId>,
next_phase: Phase,
) -> bool {
match module {
PackageQualified::Unqualified(_) => {
// no dependency, we can just start loading the file
false
}
PackageQualified::Qualified(shorthand, module_id) => {
let job = Job::ResolveShorthand(shorthand);
let next_step = Job::Step(*module_id, next_phase);
match self.status.get(&job) {
None | Some(Status::NotStarted) | Some(Status::Pending) => {
// this shorthand is not resolved, add a dependency
{
let entry = self
.waiting_for
.entry(next_step.clone())
.or_insert_with(Default::default);
entry.insert(job.clone());
}
{
let entry = self.notifies.entry(job).or_insert_with(Default::default);
entry.insert(next_step);
}
true
}
Some(Status::Done) => {
// shorthand is resolved; no dependency
false
}
}
}
}
}
/// A waits for B, and B will notify A when it completes the phase
fn add_dependency(&mut self, a: ModuleId, b: ModuleId, phase: Phase) {
self.add_dependency_help(a, b, phase, phase);
}
/// phase_a of module a is waiting for phase_b of module_b
fn add_dependency_help(&mut self, a: ModuleId, b: ModuleId, phase_a: Phase, phase_b: Phase) {
// no need to wait if the dependency is already done!
if let Some(Status::Done) = self.status.get(&Job::Step(b, phase_b)) {
return;
}
let key = Job::Step(a, phase_a);
let value = Job::Step(b, phase_b);
match self.waiting_for.get_mut(&key) {
Some(existing) => {
existing.insert(value);
}
None => {
let mut set = MutSet::default();
set.insert(value);
self.waiting_for.insert(key, set);
}
}
let key = Job::Step(b, phase_b);
let value = Job::Step(a, phase_a);
match self.notifies.get_mut(&key) {
Some(existing) => {
existing.insert(value);
}
None => {
let mut set = MutSet::default();
set.insert(value);
self.notifies.insert(key, set);
}
}
}
pub fn solved_all(&self) -> bool {
debug_assert_eq!(self.notifies.is_empty(), self.waiting_for.is_empty());
for status in self.status.values() {
match status {
Status::Done => {
continue;
}
_ => {
return false;
}
}
}
true
}
pub fn prepare_start_phase(&mut self, module_id: ModuleId, phase: Phase) -> PrepareStartPhase {
match self.status.get_mut(&Job::Step(module_id, phase)) {
Some(current @ Status::NotStarted) => {
// start this phase!
*current = Status::Pending;
PrepareStartPhase::Continue
}
Some(Status::Pending) => {
// don't start this task again!
PrepareStartPhase::Done
}
Some(Status::Done) => {
// don't start this task again, but tell those waiting for it they can continue
let new = self.notify(module_id, phase);
PrepareStartPhase::Recurse(new)
}
None => match phase {
Phase::LoadHeader => {
// this is fine, mark header loading as pending
self.status
.insert(Job::Step(module_id, Phase::LoadHeader), Status::Pending);
PrepareStartPhase::Continue
}
_ => unreachable!(
"Pair {:?} is not in dependencies.status, that should never happen!",
(module_id, phase)
),
},
}
}
/// Loads the dependency graph to find and make specializations, and returns the next jobs to
/// be run.
///
/// This should be used when the compiler wants to build or run a Roc executable if and only if
/// previous stages succeed; in such cases we load the dependency graph dynamically.
pub fn load_find_and_make_specializations_after_check(&mut self) -> MutSet<(ModuleId, Phase)> {
let mut output = MutSet::default();
let mut make_specializations_dependents = MakeSpecializationsDependents::default();
let default_make_specializations_dependents_len = make_specializations_dependents.0.len();
std::mem::swap(
&mut self.make_specializations_dependents,
&mut make_specializations_dependents,
);
for (&module, info) in make_specializations_dependents.0.iter_mut() {
debug_assert!(self.status.get_mut(&Job::Step(module, Phase::FindSpecializations)).is_none(), "should only have targeted solving types, but there is already a goal to find specializations");
debug_assert!(self.status.get_mut(&Job::Step(module, Phase::MakeSpecializations)).is_none(), "should only have targeted solving types, but there is already a goal to make specializations");
debug_assert!(
module == ModuleId::DERIVED_GEN || info.succ.contains(&ModuleId::DERIVED_GEN),
"derived module not accounted for in {:?}",
(module, info)
);
let mut has_find_specialization_dep = false;
for &module_dep in info.succ.iter() {
// The modules in `succ` are the modules for which specializations should be made
// after the current one. But, their specializations should be found before the
// current one.
if module_dep != ModuleId::DERIVED_GEN {
// We never find specializations for DERIVED_GEN
self.add_dependency(module, module_dep, Phase::FindSpecializations);
has_find_specialization_dep = true;
}
self.add_dependency(module_dep, module, Phase::MakeSpecializations);
self.add_dependency(ModuleId::DERIVED_GEN, module, Phase::MakeSpecializations);
// `module_dep` can't make its specializations until the current module does.
info.has_pred = true;
}
if module != ModuleId::DERIVED_GEN {
self.add_to_status_for_phase(module, Phase::FindSpecializations);
self.add_dependency_help(
module,
module,
Phase::MakeSpecializations,
Phase::FindSpecializations,
);
}
self.add_to_status_for_phase(module, Phase::MakeSpecializations);
if !has_find_specialization_dep && module != ModuleId::DERIVED_GEN {
// We don't depend on any other modules having their specializations found first,
// so start finding specializations from this module.
output.insert((module, Phase::FindSpecializations));
}
}
std::mem::swap(
&mut self.make_specializations_dependents,
&mut make_specializations_dependents,
);
debug_assert_eq!(
make_specializations_dependents.0.len(),
default_make_specializations_dependents_len,
"more modules were added to the graph: {:?}",
make_specializations_dependents
);
output
}
/// Load the entire "make specializations" dependency graph and start from the top.
pub fn reload_make_specialization_pass(&mut self) -> MutSet<(ModuleId, Phase)> {
let mut output = MutSet::default();
let mut make_specializations_dependents = MakeSpecializationsDependents::default();
let default_make_specializations_dependents_len = make_specializations_dependents.0.len();
std::mem::swap(
&mut self.make_specializations_dependents,
&mut make_specializations_dependents,
);
for (&module, _) in make_specializations_dependents.0.iter() {
let job = Job::Step(module, Phase::MakeSpecializations);
let status = self.status.get_mut(&job).unwrap();
debug_assert!(
matches!(status, Status::Done),
"all previous make specializations should be done before reloading"
);
*status = Status::NotStarted;
}
// `add_dependency` borrows self as mut so we move `make_specializations_dependents` out
// for our local use. `add_dependency` should never grow the make specializations
// dependency graph.
for (&module, MakeSpecializationInfo { succ, has_pred }) in
make_specializations_dependents.0.iter()
{
for &dependent in succ {
self.add_dependency(dependent, module, Phase::MakeSpecializations);
}
self.add_to_status_for_phase(module, Phase::MakeSpecializations);
if !has_pred {
output.insert((module, Phase::MakeSpecializations));
}
}
std::mem::swap(
&mut self.make_specializations_dependents,
&mut make_specializations_dependents,
);
debug_assert_eq!(
make_specializations_dependents.0.len(),
default_make_specializations_dependents_len,
"more modules were added to the graph: {:?}",
make_specializations_dependents
);
output
}
}
pub enum PrepareStartPhase {
Continue,
Done,
Recurse(MutSet<(ModuleId, Phase)>),
}