## Summary
<!-- What's the purpose of the change? What does it do, and why? -->
Fix `await-outside-async` to allow `await` at the top-level scope of a
notebook.
```python
# foo.ipynb
await asyncio.sleep(1) # should be allowed
```
## Test Plan
<!-- How was it tested? -->
A unit test
## Summary
Resolves#13833.
## Test Plan
`cargo nextest run` and `cargo insta test`.
---------
Co-authored-by: Charlie Marsh <charlie.r.marsh@gmail.com>
This PR accounts for further subtleties in `Decimal` parsing:
- Strings which are empty modulo underscores and surrounding whitespace
are skipped
- `Decimal("-0")` is skipped
- `Decimal("{integer literal that is longer than 640 digits}")` are
skipped (see linked issue for explanation)
NB: The snapshot did not need to be updated since the new test cases are
"Ok" instances and added below the diff.
Closes#14204
## Summary
Create definitions and infer types for PEP 695 type variables.
This just gives us the type of the type variable itself (the type of `T`
as a runtime object in the body of `def f[T](): ...`), with special
handling for its attributes `__name__`, `__bound__`, `__constraints__`,
and `__default__`. Mostly the support for these attributes exists
because it is easy to implement and allows testing that we are
internally representing the typevar correctly.
This PR doesn't yet have support for interpreting a typevar as a type
annotation, which is of course the primary use of a typevar. But the
information we store in the typevar's type in this PR gives us
everything we need to handle it correctly in a future PR when the
typevar appears in an annotation.
## Test Plan
Added mdtest.
## Summary
`Ty::BuiltinClassLiteral(…)` is a sub~~class~~type of
`Ty::BuiltinInstance("type")`, so it can't be disjoint from it.
## Test Plan
New `is_not_disjoint_from` test case
## Summary
Fix `Type::is_assignable_to` for union types on the left hand side (of
`.is_assignable_to`; or the right hand side of the `… = …` assignment):
`Literal[1, 2]` should be assignable to `int`.
## Test Plan
New unit tests that were previously failing.
## Summary
Minor fix to `Type::is_subtype_of` to make sure that Boolean literals
are subtypes of `int`, to match runtime semantics.
Found this while doing some property-testing experiments [1].
[1] https://github.com/astral-sh/ruff/pull/14178
## Test Plan
New unit test.
## Summary
Fixes#14114. I don't think I can really describe the problems with our
current architecture (and therefore the motivations for this PR) any
better than @carljm did in that issue, so I'll just copy it out here!
---
We currently represent "known instances" (e.g. special forms like
`typing.Literal`, which are an instance of `typing._SpecialForm`, but
need to be handled differently from other instances of
`typing._SpecialForm`) as an `InstanceType` with a `known` field that is
`Some(...)`.
This makes it easy to handle a known instance as if it were a regular
instance type (by ignoring the `known` field), and in some cases (e.g.
`Type::member`) that is correct and convenient. But in other cases (e.g.
`Type::is_equivalent_to`) it is not correct, and we currently have a bug
that we would consider the known-instance type of `typing.Literal` as
equivalent to the general instance type for `typing._SpecialForm`, and
we would fail to consider it a singleton type or a single-valued type
(even though it is both.)
An instance type with `known.is_some()` is semantically quite different
from an instance type with `known.is_none()`. The former is a singleton
type that represents exactly one runtime object; the latter is an open
type that represents many runtime objects, including instances of
unknown subclasses. It is too error-prone to represent these
very-different types as a single `Type` variant. We should instead
introduce a dedicated `Type::KnownInstance` variant and force ourselves
to handle these explicitly in all `Type` variant matches.
## Possible followups
There is still a little bit of awkwardness in our current design in some
places, in that we first infer the symbol `typing.Literal` as a
`_SpecialForm` instance, and then later convert that instance-type into
a known-instance-type. We could also use this `KnownInstanceType` enum
to account for other special runtime symbols such as `builtins.Ellipsis`
or `builtins.NotImplemented`.
I think these might be worth pursuing, but I didn't do them here as they
didn't seem essential right now, and I wanted to keep the diff
relatively minimal.
## Test Plan
`cargo test -p red_knot_python_semantic`. New unit tests added for
`Type::is_subtype_of`.
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
## Summary
This adds type inference for comparison expressions involving
intersection types.
For example:
```py
x = get_random_int()
if x != 42:
reveal_type(x == 42) # revealed: Literal[False]
reveal_type(x == 43) # bool
```
closes#13854
## Test Plan
New Markdown-based tests.
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
## Summary
- Get rid of `Symbol::unwrap_or` (unclear semantics, not needed anymore)
- Introduce `Type::call_dunder`
- Emit new diagnostic for possibly-unbound `__iter__` methods
- Better diagnostics for callables with possibly-unbound /
possibly-non-callable `__call__` methods
part of: #14022closes#14016
## Test Plan
- Updated test for iterables with possibly-unbound `__iter__` methods.
- New tests for callables
## Summary
- Adds basic support for `type[C]` as a red knot `Type`. Some things
might not be supported yet, like `type[Any]`.
- Adds type narrowing for `issubclass` checks.
closes#14117
## Test Plan
New Markdown-based tests
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
## Summary
Implementation for one of the rules in
https://github.com/astral-sh/ruff/issues/1348
Refurb only deals only with classes with a single base, however the rule
is valid for any base.
(`str, Enum` is common prior to `StrEnum`)
## Test Plan
`cargo test`
---------
Co-authored-by: Dhruv Manilawala <dhruvmanila@gmail.com>
Flake8-builtins provides two checks for arguments (really, parameters)
of a function shadowing builtins: A002 checks function definitions, and
A006 checks lambda expressions. This PR ensures that A002 is restricted
to functions rather than lambda expressions.
Closes#14135 .
## Summary
I mirrored some of the idioms that @AlexWaygood used in the MRO work.
Closes https://github.com/astral-sh/ruff/issues/14096.
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
## Summary
Related to
https://github.com/astral-sh/ruff/pull/13979#discussion_r1828305790,
this PR removes the `current_unpack` state field from
`SemanticIndexBuilder` and passes the `Unpack` ingredient via the
`CurrentAssignment` -> `DefinitionNodeRef` conversion to finally store
it on `DefintionNodeKind`.
This involves updating the lifetime of `AnyParameterRef` (parameter to
`declare_parameter`) to use the `'db` lifetime. Currently, all AST nodes
stored on various enums are marked with `'a` lifetime but they're always
utilized using the `'db` lifetime.
This also removes the dedicated `'a` lifetime parameter on
`add_definition` which is currently being used in `DefinitionNodeRef`.
As mentioned, all AST nodes live through the `'db` lifetime so we can
remove the `'a` lifetime parameter from that method and use the `'db`
lifetime instead.
FURB157 suggests replacing expressions like `Decimal("123")` with
`Decimal(123)`. This PR extends the rule to cover cases where the input
string to `Decimal` can be easily transformed into an integer literal.
For example:
```python
Decimal("1__000") # fix: `Decimal(1000)`
```
Note: we do not implement the full decimal parsing logic from CPython on
the grounds that certain acceptable string inputs to the `Decimal`
constructor may be presumed purposeful on the part of the developer. For
example, as in the linked issue, `Decimal("١٢٣")` is valid and equal to
`Decimal(123)`, but we do not suggest a replacement in this case.
Closes#13807
## Summary
- Store the expression type for annotations that are starred expressions
(see [discussion
here](https://github.com/astral-sh/ruff/pull/14091#discussion_r1828332857))
- Use `self.store_expression_type(…)` consistently throughout, as it
makes sure that no double-insertion errors occur.
closes#14115
## Test Plan
Added an invalid-syntax example to the corpus which leads to a panic on
`main`. Also added a Markdown test with a valid-syntax example that
would lead to a panic once we implement function parameter inference.
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
## Summary
Adds more precise type inference for `… is …` and `… is not …` identity
checks in some limited cases where we statically know the answer to be
either `Literal[True]` or `Literal[False]`.
I found this helpful while working on type inference for comparisons
involving intersection types, but I'm not sure if this is at all useful
for real world code (where the answer is most probably *not* statically
known). Note that we already have *type narrowing* for identity tests.
So while we are already able to generate constraints for things like `if
x is None`, we can now — in some limited cases — make an even stronger
conclusion and infer that the test expression itself is `Literal[False]`
(branch never taken) or `Literal[True]` (branch always taken).
## Test Plan
New Markdown tests