When a type of the form `Literal["..."]` would be constructed with too
large of a string, this PR converts it to `LiteralString` instead.
We also extend inference for binary operations to include the case where
one of the operands is `LiteralString`.
Closes#13224
Pull the tests from `types.rs` into `infer.rs`.
All of these are integration tests with the same basic form: create a
code sample, run type inference or check on it, and make some assertions
about types and/or diagnostics. These are the sort of tests we will want
to move into a test framework with a low-boilerplate custom textual
format. In the meantime, having them together (and more importantly,
their helper utilities together) means that it's easy to keep tests for
related language features together (iterable tests with other iterable
tests, callable tests with other callable tests), without an artificial
split based on tests which test diagnostics vs tests which test
inference. And it allows a single test to more easily test both
diagnostics and inference. (Ultimately in the test framework, they will
likely all test diagnostics, just in some cases the diagnostics will
come from `reveal_type()`.)
My plan for handling declared types is to introduce a `Declaration` in
addition to `Definition`. A `Declaration` is an annotation of a name
with a type; a `Definition` is an actual runtime assignment of a value
to a name. A few things (an annotated function parameter, an
annotated-assignment with an RHS) are both a `Definition` and a
`Declaration`.
This more cleanly separates type inference (only cares about
`Definition`) from declared types (only impacted by a `Declaration`),
and I think it will work out better than trying to squeeze everything
into `Definition`. One of the tests in this PR
(`annotation_only_assignment_transparent_to_local_inference`)
demonstrates one reason why. The statement `x: int` should have no
effect on local inference of the type of `x`; whatever the locally
inferred type of `x` was before `x: int` should still be the inferred
type after `x: int`. This is actually quite hard to do if `x: int` is
considered a `Definition`, because a core assumption of the use-def map
is that a `Definition` replaces the previous value. To achieve this
would require some hackery to effectively treat `x: int` sort of as if
it were `x: int = x`, but it's not really even equivalent to that, so
this approach gets quite ugly.
As a first step in this plan, this PR stops treating AnnAssign with no
RHS as a `Definition`, which fixes behavior in a couple added tests.
This actually makes things temporarily worse for the ellipsis-type test,
since it is defined in typeshed only using annotated assignments with no
RHS. This will be fixed properly by the upcoming addition of
declarations, which should also treat a declared type as sufficient to
import a name, at least from a stub.
Initially I had deferred annotation name lookups reuse the "public
symbol type", since that gives the correct "from end of scope" view of
reaching definitions that we want. But there is a key difference; public
symbol types are based only on definitions in the queried scope (or
"name in the given namespace" in runtime terms), they don't ever look up
a name in nonlocal/global/builtin scopes. Deferred annotation resolution
should do this lookup.
Add a test, and fix deferred name resolution to support
nonlocal/global/builtin names.
Fixes#13176
## Summary
Part of #13085, this PR updates the comprehension definition to handle
multiple targets.
## Test Plan
Update existing semantic index test case for comprehension with multiple
targets. Running corpus tests shouldn't panic.
Add support for non-local name lookups.
There's one TODO around annotated assignments without a RHS; these need
a fair amount of attention, which they'll get in an upcoming PR about
declared vs inferred types.
Fixes#11663
Test coverage for #13131 wasn't as good as I thought it was, because
although we infer a lot of types in stubs in typeshed, we don't check
typeshed, and therefore we don't do scope-level inference and pull all
types for a scope. So we didn't really have good test coverage for
scope-level inference in a stub. And because of this, I got the code for
supporting that wrong, meaning that if we did scope-level inference with
deferred types, we'd end up never populating the deferred types in the
scope's `TypeInference`, which causes panics like #13160.
Here I both add test coverage by running the corpus tests both as `.py`
and as `.pyi` (which reveals the panic), and I fix the code to support
deferred types in scope inference.
This also revealed a problem with deferred types in generic functions,
which effectively span two scopes. That problem will require a bit more
thought, and I don't want to block this PR on it, so for now I just
don't defer annotations on generic functions.
Fixes#13160.
## Summary
Follow-up to #13147, this PR implements the `AstNode` for `Identifier`.
This makes it easier to create the `NodeKey` in red knot because it uses
a generic method to construct the key from `AnyNodeRef` and is important
for definitions that are created only on identifiers instead of
`ExprName`.
## Test Plan
`cargo test` and `cargo clippy`
## Summary
This PR adds definition for match patterns.
## Test Plan
Update the existing test case for match statement symbols to verify that
the definitions are added as well.
This PR contains the following updates:
| Package | Type | Update | Change |
|---|---|---|---|
| [quick-junit](https://redirect.github.com/nextest-rs/quick-junit) |
workspace.dependencies | minor | `0.4.0` -> `0.5.0` |
---
### Release Notes
<details>
<summary>nextest-rs/quick-junit (quick-junit)</summary>
###
[`v0.5.0`](https://redirect.github.com/nextest-rs/quick-junit/blob/HEAD/CHANGELOG.md#050---2024-09-01)
[Compare
Source](https://redirect.github.com/nextest-rs/quick-junit/compare/quick-junit-0.4.0...quick-junit-0.5.0)
##### Changed
- The `Output` type, which strips invalid XML characters from a string,
has been renamed to
`XmlString`.
- All internal storage now uses `XmlString` rather than `String`.
</details>
---
### Configuration
📅 **Schedule**: Branch creation - "before 4am on Monday" (UTC),
Automerge - At any time (no schedule defined).
🚦 **Automerge**: Disabled by config. Please merge this manually once you
are satisfied.
♻ **Rebasing**: Whenever PR becomes conflicted, or you tick the
rebase/retry checkbox.
🔕 **Ignore**: Close this PR and you won't be reminded about this update
again.
---
- [ ] <!-- rebase-check -->If you want to rebase/retry this PR, check
this box
---
This PR was generated by [Mend Renovate](https://mend.io/renovate/).
View the [repository job
log](https://developer.mend.io/github/astral-sh/ruff).
<!--renovate-debug:eyJjcmVhdGVkSW5WZXIiOiIzOC41Ni4wIiwidXBkYXRlZEluVmVyIjoiMzguNTkuMiIsInRhcmdldEJyYW5jaCI6Im1haW4iLCJsYWJlbHMiOlsiaW50ZXJuYWwiXX0=-->
---------
Co-authored-by: renovate[bot] <29139614+renovate[bot]@users.noreply.github.com>
Co-authored-by: Dhruv Manilawala <dhruvmanila@gmail.com>
## Summary
The `SequenceIndexVisitor` currently does not recurse into
subexpressions of subscripts when searching for subscript accesses that
would trigger this rule. That means that we don't currently detect
violations of the rule on snippets like this:
```py
data = {"a": 1, "b": 2}
column_names = ["a", "b"]
for index, column_name in enumerate(column_names):
_ = data[column_names[index]]
```
Fixes#13183
## Test Plan
`cargo test -p ruff_linter`
The `UnionBuilder` builds `builtins.bool` when handed `Literal[True]`
and `Literal[False]`.
Caveat: If the builtins module is unfindable somehow, the builder falls
back to the union type of these two literals.
First task from #12694
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
## Summary
Adds basic support for inferring the type resulting from a call
expression. This only works for the *result* of call expressions; it
performs no inference on parameters. It also intentionally does nothing
with class instantiation, `__call__` implementors, or lambdas.
## Test Plan
Adds a test that it infers the right thing!
---------
Co-authored-by: Carl Meyer <carl@astral.sh>