Closes astral-sh/ty#456. Part of astral-sh/ty#994. After all the foundational work, this is only a small change, but let's see if it exposes any unresolved issues.
9.9 KiB
Narrowing for isinstance checks
Narrowing for isinstance(object, classinfo) expressions.
classinfo is a single type
def _(flag: bool):
x = 1 if flag else "a"
if isinstance(x, int):
reveal_type(x) # revealed: Literal[1]
if isinstance(x, str):
reveal_type(x) # revealed: Literal["a"]
if isinstance(x, int):
reveal_type(x) # revealed: Never
if isinstance(x, (int, object)):
reveal_type(x) # revealed: Literal[1, "a"]
classinfo is a tuple of types
Note: isinstance(x, (int, str)) should not be confused with isinstance(x, tuple[(int, str)]).
The former is equivalent to isinstance(x, int | str):
def _(flag: bool, flag1: bool, flag2: bool):
x = 1 if flag else "a"
if isinstance(x, (int, str)):
reveal_type(x) # revealed: Literal[1, "a"]
else:
reveal_type(x) # revealed: Never
if isinstance(x, (int, bytes)):
reveal_type(x) # revealed: Literal[1]
if isinstance(x, (bytes, str)):
reveal_type(x) # revealed: Literal["a"]
# No narrowing should occur if a larger type is also
# one of the possibilities:
if isinstance(x, (int, object)):
reveal_type(x) # revealed: Literal[1, "a"]
else:
reveal_type(x) # revealed: Never
y = 1 if flag1 else "a" if flag2 else b"b"
if isinstance(y, (int, str)):
reveal_type(y) # revealed: Literal[1, "a"]
if isinstance(y, (int, bytes)):
reveal_type(y) # revealed: Literal[1, b"b"]
if isinstance(y, (str, bytes)):
reveal_type(y) # revealed: Literal["a", b"b"]
classinfo is a nested tuple of types
def _(flag: bool):
x = 1 if flag else "a"
if isinstance(x, (bool, (bytes, int))):
reveal_type(x) # revealed: Literal[1]
else:
reveal_type(x) # revealed: Literal["a"]
Class types
class A: ...
class B: ...
class C: ...
x = object()
if isinstance(x, A):
reveal_type(x) # revealed: A
if isinstance(x, B):
reveal_type(x) # revealed: A & B
else:
reveal_type(x) # revealed: A & ~B
if isinstance(x, (A, B)):
reveal_type(x) # revealed: A | B
elif isinstance(x, (A, C)):
reveal_type(x) # revealed: C & ~A & ~B
else:
reveal_type(x) # revealed: ~A & ~B & ~C
No narrowing for instances of builtins.type
def _(flag: bool, t: type):
x = 1 if flag else "foo"
if isinstance(x, t):
reveal_type(x) # revealed: Literal[1, "foo"]
Do not use custom isinstance for narrowing
def _(flag: bool):
def isinstance(x, t):
return True
x = 1 if flag else "a"
if isinstance(x, int):
reveal_type(x) # revealed: Literal[1, "a"]
Do support narrowing if isinstance is aliased
def _(flag: bool):
isinstance_alias = isinstance
x = 1 if flag else "a"
if isinstance_alias(x, int):
reveal_type(x) # revealed: Literal[1]
Do support narrowing if isinstance is imported
from builtins import isinstance as imported_isinstance
def _(flag: bool):
x = 1 if flag else "a"
if imported_isinstance(x, int):
reveal_type(x) # revealed: Literal[1]
Do not narrow if second argument is not a type
def _(flag: bool):
x = 1 if flag else "a"
# TODO: this should cause us to emit a diagnostic during
# type checking
if isinstance(x, "a"):
reveal_type(x) # revealed: Literal[1, "a"]
# TODO: this should cause us to emit a diagnostic during
# type checking
if isinstance(x, "int"):
reveal_type(x) # revealed: Literal[1, "a"]
Do not narrow if there are keyword arguments
def _(flag: bool):
x = 1 if flag else "a"
# error: [unknown-argument]
if isinstance(x, int, foo="bar"):
reveal_type(x) # revealed: Literal[1, "a"]
type[] types are narrowed as well as class-literal types
def _(x: object, y: type[int]):
if isinstance(x, y):
reveal_type(x) # revealed: int
Adding a disjoint element to an existing intersection
We used to incorrectly infer Literal booleans for some of these.
from ty_extensions import Not, Intersection, AlwaysTruthy, AlwaysFalsy
class P: ...
def f(
a: Intersection[P, AlwaysTruthy],
b: Intersection[P, AlwaysFalsy],
c: Intersection[P, Not[AlwaysTruthy]],
d: Intersection[P, Not[AlwaysFalsy]],
):
if isinstance(a, bool):
reveal_type(a) # revealed: Never
else:
reveal_type(a) # revealed: P & AlwaysTruthy
if isinstance(b, bool):
reveal_type(b) # revealed: Never
else:
reveal_type(b) # revealed: P & AlwaysFalsy
if isinstance(c, bool):
reveal_type(c) # revealed: Never
else:
reveal_type(c) # revealed: P & ~AlwaysTruthy
if isinstance(d, bool):
reveal_type(d) # revealed: Never
else:
reveal_type(d) # revealed: P & ~AlwaysFalsy
Narrowing if an object of type Any or Unknown is used as the second argument
In order to preserve the gradual guarantee, we intersect with the type of the second argument if the type of the second argument is a dynamic type:
from typing import Any
from something_unresolvable import SomethingUnknown # error: [unresolved-import]
class Foo: ...
def f(a: Foo, b: Any):
if isinstance(a, SomethingUnknown):
reveal_type(a) # revealed: Foo & Unknown
if isinstance(a, b):
reveal_type(a) # revealed: Foo & Any
Narrowing if an object with an intersection/union/TypeVar type is used as the second argument
If an intersection with only positive members is used as the second argument, and all positive
members of the intersection are valid arguments for the second argument to isinstance(), we
intersect with each positive member of the intersection:
[environment]
python-version = "3.12"
from typing import Any
from ty_extensions import Intersection
class Foo: ...
class Bar:
attribute: int
class Baz:
attribute: str
def f(x: Foo, y: Intersection[type[Bar], type[Baz]], z: type[Any]):
if isinstance(x, y):
reveal_type(x) # revealed: Foo & Bar & Baz
if isinstance(x, z):
reveal_type(x) # revealed: Foo & Any
The same if a union type is used:
def g(x: Foo, y: type[Bar | Baz]):
if isinstance(x, y):
reveal_type(x) # revealed: (Foo & Bar) | (Foo & Baz)
And even if a TypeVar is used, providing it has valid upper bounds/constraints:
from typing import TypeVar
T = TypeVar("T", bound=type[Bar])
def h_old_syntax(x: Foo, y: T) -> T:
if isinstance(x, y):
reveal_type(x) # revealed: Foo & Bar
reveal_type(x.attribute) # revealed: int
return y
def h[U: type[Bar | Baz]](x: Foo, y: U) -> U:
if isinstance(x, y):
reveal_type(x) # revealed: (Foo & Bar) | (Foo & Baz)
reveal_type(x.attribute) # revealed: int | str
return y
Or even a tuple of tuple of typevars that have intersection bounds...
from ty_extensions import Intersection
class Spam: ...
class Eggs: ...
class Ham: ...
class Mushrooms: ...
def i[T: Intersection[type[Bar], type[Baz | Spam]], U: (type[Eggs], type[Ham])](x: Foo, y: T, z: U) -> tuple[T, U]:
if isinstance(x, (y, (z, Mushrooms))):
reveal_type(x) # revealed: (Foo & Bar & Baz) | (Foo & Bar & Spam) | (Foo & Eggs) | (Foo & Ham) | (Foo & Mushrooms)
return (y, z)
Narrowing with generics
[environment]
python-version = "3.12"
Narrowing to a generic class using isinstance() uses the top materialization of the generic. With
a covariant generic, this is equivalent to using the upper bound of the type parameter (by default,
object):
class Covariant[T]:
def get(self) -> T:
raise NotImplementedError
def _(x: object):
if isinstance(x, Covariant):
reveal_type(x) # revealed: Covariant[object]
reveal_type(x.get()) # revealed: object
Similarly, contravariant type parameters use their lower bound of Never:
class Contravariant[T]:
def push(self, x: T) -> None: ...
def _(x: object):
if isinstance(x, Contravariant):
reveal_type(x) # revealed: Contravariant[Never]
# error: [invalid-argument-type] "Argument to bound method `push` is incorrect: Expected `Never`, found `Literal[42]`"
x.push(42)
Invariant generics are trickiest. The top materialization, conceptually the type that includes all
instances of the generic class regardless of the type parameter, cannot be represented directly in
the type system, so we represent it with the internal Top[] special form.
class Invariant[T]:
def push(self, x: T) -> None: ...
def get(self) -> T:
raise NotImplementedError
def _(x: object):
if isinstance(x, Invariant):
reveal_type(x) # revealed: Top[Invariant[Unknown]]
reveal_type(x.get()) # revealed: object
# error: [invalid-argument-type] "Argument to bound method `push` is incorrect: Expected `Never`, found `Literal[42]`"
x.push(42)
When more complex types are involved, the Top[] type may get simplified away.
def _(x: list[int] | set[str]):
if isinstance(x, list):
reveal_type(x) # revealed: list[int]
else:
reveal_type(x) # revealed: set[str]
Though if the types involved are not disjoint bases, we necessarily keep a more complex type.
def _(x: Invariant[int] | Covariant[str]):
if isinstance(x, Invariant):
reveal_type(x) # revealed: Invariant[int] | (Covariant[str] & Top[Invariant[Unknown]])
else:
reveal_type(x) # revealed: Covariant[str] & ~Top[Invariant[Unknown]]
The behavior of issubclass() is similar.
def _(x: type[object], y: type[object], z: type[object]):
if issubclass(x, Covariant):
reveal_type(x) # revealed: type[Covariant[object]]
if issubclass(y, Contravariant):
reveal_type(y) # revealed: type[Contravariant[Never]]
if issubclass(z, Invariant):
reveal_type(z) # revealed: type[Top[Invariant[Unknown]]]