mirror of
https://github.com/astral-sh/ruff.git
synced 2025-10-01 22:31:47 +00:00

## Summary Add a typed representation of function signatures (parameters and return type) and infer it correctly from a function. Convert existing usage of function return types to use the signature representation. This does not yet add inferred types for parameters within function body scopes based on the annotations, but it should be easy to add as a next step. Part of #14161 and #13693. ## Test Plan Added tests.
3 KiB
3 KiB
PEP 695 Generics
Class Declarations
Basic PEP 695 generics
class MyBox[T]:
data: T
box_model_number = 695
def __init__(self, data: T):
self.data = data
box: MyBox[int] = MyBox(5)
# TODO should emit a diagnostic here (str is not assignable to int)
wrong_innards: MyBox[int] = MyBox("five")
# TODO reveal int
reveal_type(box.data) # revealed: @Todo
reveal_type(MyBox.box_model_number) # revealed: Literal[695]
Subclassing
class MyBox[T]:
data: T
def __init__(self, data: T):
self.data = data
# TODO not error on the subscripting
# error: [non-subscriptable]
class MySecureBox[T](MyBox[T]): ...
secure_box: MySecureBox[int] = MySecureBox(5)
reveal_type(secure_box) # revealed: MySecureBox
# TODO reveal int
reveal_type(secure_box.data) # revealed: @Todo
Cyclical class definition
In type stubs, classes can reference themselves in their base class definitions. For example, in
typeshed
, we have class str(Sequence[str]): ...
.
This should hold true even with generics at play.
class Seq[T]: ...
# TODO not error on the subscripting
class S[T](Seq[S]): ... # error: [non-subscriptable]
reveal_type(S) # revealed: Literal[S]
Type params
A PEP695 type variable defines a value of type typing.TypeVar
with attributes __name__
,
__bounds__
, __constraints__
, and __default__
(the latter three all lazily evaluated):
def f[T, U: A, V: (A, B), W = A, X: A = A1]():
reveal_type(T) # revealed: T
reveal_type(T.__name__) # revealed: Literal["T"]
reveal_type(T.__bound__) # revealed: None
reveal_type(T.__constraints__) # revealed: tuple[()]
reveal_type(T.__default__) # revealed: NoDefault
reveal_type(U) # revealed: U
reveal_type(U.__name__) # revealed: Literal["U"]
reveal_type(U.__bound__) # revealed: type[A]
reveal_type(U.__constraints__) # revealed: tuple[()]
reveal_type(U.__default__) # revealed: NoDefault
reveal_type(V) # revealed: V
reveal_type(V.__name__) # revealed: Literal["V"]
reveal_type(V.__bound__) # revealed: None
reveal_type(V.__constraints__) # revealed: tuple[type[A], type[B]]
reveal_type(V.__default__) # revealed: NoDefault
reveal_type(W) # revealed: W
reveal_type(W.__name__) # revealed: Literal["W"]
reveal_type(W.__bound__) # revealed: None
reveal_type(W.__constraints__) # revealed: tuple[()]
reveal_type(W.__default__) # revealed: type[A]
reveal_type(X) # revealed: X
reveal_type(X.__name__) # revealed: Literal["X"]
reveal_type(X.__bound__) # revealed: type[A]
reveal_type(X.__constraints__) # revealed: tuple[()]
reveal_type(X.__default__) # revealed: type[A1]
class A: ...
class B: ...
class A1(A): ...
Minimum two constraints
A typevar with less than two constraints emits a diagnostic and is treated as unconstrained:
# error: [invalid-typevar-constraints] "TypeVar must have at least two constrained types"
def f[T: (int,)]():
reveal_type(T.__constraints__) # revealed: tuple[()]