ruff/crates/ty_python_semantic/resources/mdtest/annotations/self.md
Carl Meyer 5d3a35e071
[ty] fix implicit Self on generic class with typevar default (#20754)
## Summary

Typevar attributes (bound/constraints/default) can be either lazily
evaluated or eagerly evaluated. Currently they are lazily evaluated for
PEP 695 typevars, and eager for legacy and synthetic typevars.
https://github.com/astral-sh/ruff/pull/20598 will make them lazy also
for legacy typevars, and the ecosystem report on that PR surfaced the
issue fixed here (because legacy typevars are much more common in the
ecosystem than PEP 695 typevars.)

Applying a transform to a typevar (normalization, materialization, or
mark-inferable) will reify all lazy attributes and create a new typevar
with eager attributes. In terms of Salsa identity, this transformed
typevar will be considered different from the original typevar, whether
or not the attributes were actually transformed.

In general, this is not a problem, since all typevars in a given generic
context will be transformed, or not, together.

The exception to this was implicit-self vs explicit Self annotations.
The typevar we created for implicit self was created initially using
inferable typevars, whereas an explicit Self annotation is initially
non-inferable, then transformed via mark-inferable when accessed as part
of a function signature. If the containing class (which becomes the
upper bound of `Self`) is generic, and has e.g. a lazily-evaluated
default, then the explicit-Self annotation will reify that default in
the upper bound, and the implicit-self would not, leading them to be
treated as different typevars, and causing us to fail to solve a call to
a method such as `def method(self) -> Self` correctly.

The fix here is to treat implicit-self more like explicit-Self,
initially creating it as non-inferable and then using the mark-inferable
transform on it. This is less efficient, but restores the invariant that
all typevars in a given generic context are transformed together, or
not, fixing the bug.

In the improved-constraint-solver work, the separation of typevars into
"inferable" and "non-inferable" is expected to disappear, along with the
mark-inferable transform, which would render both this bug and the fix
moot. So this fix is really just temporary until that lands.

There is a performance regression, but not a huge one: 1-2% on most
projects, 5% on one outlier. This seems acceptable, given that it should
be fully recovered by removing the mark-inferable transform.

## Test Plan

Added mdtests that failed before this change.
2025-10-08 01:38:24 +00:00

12 KiB

Self

[environment]
python-version = "3.13"

Self is treated as if it were a TypeVar bound to the class it's being used on.

typing.Self is only available in Python 3.11 and later.

Methods

from typing import Self

class Shape:
    def set_scale(self: Self, scale: float) -> Self:
        reveal_type(self)  # revealed: Self@set_scale
        return self

    def nested_type(self: Self) -> list[Self]:
        return [self]

    def nested_func(self: Self) -> Self:
        def inner() -> Self:
            reveal_type(self)  # revealed: Self@nested_func
            return self
        return inner()

    def nested_func_without_enclosing_binding(self):
        def inner(x: Self):
            reveal_type(x)  # revealed: Self@nested_func_without_enclosing_binding
        inner(self)

reveal_type(Shape().nested_type())  # revealed: list[Shape]
reveal_type(Shape().nested_func())  # revealed: Shape

class Circle(Shape):
    def set_scale(self: Self, scale: float) -> Self:
        reveal_type(self)  # revealed: Self@set_scale
        return self

class Outer:
    class Inner:
        def foo(self: Self) -> Self:
            reveal_type(self)  # revealed: Self@foo
            return self

Type of (unannotated) self parameters

In instance methods, the first parameter (regardless of its name) is assumed to have the type typing.Self, unless it has an explicit annotation. This does not apply to @classmethod and @staticmethods.

[environment]
python-version = "3.11"
from typing import Self

class A:
    def implicit_self(self) -> Self:
        # TODO: This should be Self@implicit_self
        reveal_type(self)  # revealed: Unknown

        return self

    def a_method(self) -> int:
        def first_arg_is_not_self(a: int) -> int:
            reveal_type(a)  # revealed: int
            return a
        return first_arg_is_not_self(1)

    @classmethod
    def a_classmethod(cls) -> Self:
        # TODO: This should be type[Self@bar]
        reveal_type(cls)  # revealed: Unknown
        return cls()

    @staticmethod
    def a_staticmethod(x: int): ...

a = A()

reveal_type(a.implicit_self())  # revealed: A
reveal_type(a.implicit_self)  # revealed: bound method A.implicit_self() -> A

Calling an instance method explicitly verifies the first argument:

A.implicit_self(a)

# error: [invalid-argument-type] "Argument to function `implicit_self` is incorrect: Argument type `Literal[1]` does not satisfy upper bound `A` of type variable `Self`"
A.implicit_self(1)

Passing self implicitly also verifies the type:

from typing import Never

class Strange:
    def can_not_be_called(self: Never) -> None: ...

# error: [invalid-argument-type] "Argument to bound method `can_not_be_called` is incorrect: Expected `Never`, found `Strange`"
Strange().can_not_be_called()

If the method is a class or static method then first argument is not inferred as Self:

A.a_classmethod()
A.a_classmethod(a)  # error: [too-many-positional-arguments]
A.a_staticmethod(1)
a.a_staticmethod(1)
A.a_staticmethod(a)  # error: [invalid-argument-type]

The first parameter of instance methods always has type Self, if it is not explicitly annotated. The name self is not special in any way.

class B:
    def name_does_not_matter(this) -> Self:
        # TODO: Should reveal Self@name_does_not_matter
        reveal_type(this)  # revealed: Unknown

        return this

    def positional_only(self, /, x: int) -> Self:
        # TODO: Should reveal Self@positional_only
        reveal_type(self)  # revealed: Unknown
        return self

    def keyword_only(self, *, x: int) -> Self:
        # TODO: Should reveal Self@keyword_only
        reveal_type(self)  # revealed: Unknown
        return self

    @property
    def a_property(self) -> Self:
        # TODO: Should reveal Self@a_property
        reveal_type(self)  # revealed: Unknown
        return self

reveal_type(B().name_does_not_matter())  # revealed: B
reveal_type(B().positional_only(1))  # revealed: B
reveal_type(B().keyword_only(x=1))  # revealed: B

# TODO: this should be B
reveal_type(B().a_property)  # revealed: Unknown

This also works for generic classes:

from typing import Self, Generic, TypeVar

T = TypeVar("T")

class G(Generic[T]):
    def id(self) -> Self:
        # TODO: Should reveal Self@id
        reveal_type(self)  # revealed: Unknown

        return self

reveal_type(G[int]().id())  # revealed: G[int]
reveal_type(G[str]().id())  # revealed: G[str]

Free functions and nested functions do not use implicit Self:

def not_a_method(self):
    reveal_type(self)  # revealed: Unknown

# error: [invalid-type-form]
def does_not_return_self(self) -> Self:
    return self

class C:
    def outer(self) -> None:
        def inner(self):
            reveal_type(self)  # revealed: Unknown

reveal_type(not_a_method)  # revealed: def not_a_method(self) -> Unknown

typing_extensions

[environment]
python-version = "3.10"
from typing_extensions import Self

class C:
    def method(self: Self) -> Self:
        return self

reveal_type(C().method())  # revealed: C

Class Methods

from typing import Self, TypeVar

class Shape:
    def foo(self: Self) -> Self:
        return self

    @classmethod
    def bar(cls: type[Self]) -> Self:
        # TODO: type[Shape]
        reveal_type(cls)  # revealed: @Todo(unsupported type[X] special form)
        return cls()

class Circle(Shape): ...

reveal_type(Shape().foo())  # revealed: Shape
# TODO: Shape
reveal_type(Shape.bar())  # revealed: Unknown

Attributes

TODO: The use of Self to annotate the next_node attribute should be modeled as a property, using Self in its parameter and return type.

from typing import Self

class LinkedList:
    value: int
    next_node: Self

    def next(self: Self) -> Self:
        reveal_type(self.value)  # revealed: int
        # TODO: no error
        # error: [invalid-return-type]
        return self.next_node

reveal_type(LinkedList().next())  # revealed: LinkedList

Generic Classes

from typing import Self, Generic, TypeVar

T = TypeVar("T")

class Container(Generic[T]):
    value: T
    def set_value(self: Self, value: T) -> Self:
        return self

int_container: Container[int] = Container[int]()
reveal_type(int_container)  # revealed: Container[int]
reveal_type(int_container.set_value(1))  # revealed: Container[int]

Protocols

TODO: https://typing.python.org/en/latest/spec/generics.html#use-in-protocols

Annotations

from typing import Self

class Shape:
    def union(self: Self, other: Self | None):
        reveal_type(other)  # revealed: Self@union | None
        return self

Self for classes with a default value for their generic parameter

This is a regression test for https://github.com/astral-sh/ty/issues/1156.

from typing import Self

class Container[T = bytes]:
    def __init__(self: Self, data: T | None = None) -> None:
        self.data = data

reveal_type(Container())  # revealed: Container[bytes]
reveal_type(Container(1))  # revealed: Container[int]
reveal_type(Container("a"))  # revealed: Container[str]
reveal_type(Container(b"a"))  # revealed: Container[bytes]

Implicit self for classes with a default value for their generic parameter

from typing import Self, TypeVar, Generic

class Container[T = bytes]:
    def method(self) -> Self:
        return self

def _(c: Container[str], d: Container):
    reveal_type(c.method())  # revealed: Container[str]
    reveal_type(d.method())  # revealed: Container[bytes]

T = TypeVar("T", default=bytes)

class LegacyContainer(Generic[T]):
    def method(self) -> Self:
        return self

def _(c: LegacyContainer[str], d: LegacyContainer):
    reveal_type(c.method())  # revealed: LegacyContainer[str]
    reveal_type(d.method())  # revealed: LegacyContainer[bytes]

Invalid Usage

Self cannot be used in the signature of a function or variable.

from typing import Self, Generic, TypeVar

T = TypeVar("T")

# error: [invalid-type-form]
def x(s: Self): ...

# error: [invalid-type-form]
b: Self

# TODO: "Self" cannot be used in a function with a `self` or `cls` parameter that has a type annotation other than "Self"
class Foo:
    # TODO: rejected Self because self has a different type
    def has_existing_self_annotation(self: T) -> Self:
        return self  # error: [invalid-return-type]

    def return_concrete_type(self) -> Self:
        # TODO: tell user to use "Foo" instead of "Self"
        # error: [invalid-return-type]
        return Foo()

    @staticmethod
    # TODO: reject because of staticmethod
    def make() -> Self:
        # error: [invalid-return-type]
        return Foo()

class Bar(Generic[T]):
    foo: T
    def bar(self) -> T:
        return self.foo

# error: [invalid-type-form]
class Baz(Bar[Self]): ...

class MyMetaclass(type):
    # TODO: rejected
    def __new__(cls) -> Self:
        return super().__new__(cls)

Explicit annotations override implicit Self

If the first parameter is explicitly annotated, that annotation takes precedence over the implicit Self type.

[environment]
python-version = "3.12"
from __future__ import annotations

from typing import final

@final
class Disjoint: ...

class Explicit:
    # TODO: We could emit a warning if the annotated type of `self` is disjoint from `Explicit`
    def bad(self: Disjoint) -> None:
        reveal_type(self)  # revealed: Disjoint

    def forward(self: Explicit) -> None:
        reveal_type(self)  # revealed: Explicit

# error: [invalid-argument-type] "Argument to bound method `bad` is incorrect: Expected `Disjoint`, found `Explicit`"
Explicit().bad()

Explicit().forward()

class ExplicitGeneric[T]:
    def special(self: ExplicitGeneric[int]) -> None:
        reveal_type(self)  # revealed: ExplicitGeneric[int]

ExplicitGeneric[int]().special()

# TODO: this should be an `invalid-argument-type` error
ExplicitGeneric[str]().special()

Binding a method fixes Self

When a method is bound, any instances of Self in its signature are "fixed", since we now know the specific type of the bound parameter.

from typing import Self

class C:
    def instance_method(self, other: Self) -> Self:
        return self

    @classmethod
    def class_method(cls) -> Self:
        return cls()

# revealed: bound method C.instance_method(other: C) -> C
reveal_type(C().instance_method)
# revealed: bound method <class 'C'>.class_method() -> C
reveal_type(C.class_method)

class D(C): ...

# revealed: bound method D.instance_method(other: D) -> D
reveal_type(D().instance_method)
# revealed: bound method <class 'D'>.class_method() -> D
reveal_type(D.class_method)

In nested functions self binds to the method. So in the following example the self in C.b is bound at C.f.

from typing import Self
from ty_extensions import generic_context

class C[T]():
    def f(self: Self):
        def b(x: Self):
            reveal_type(x)  # revealed: Self@f
        reveal_type(generic_context(b))  # revealed: None

reveal_type(generic_context(C.f))  # revealed: tuple[Self@f]

Even if the Self annotation appears first in the nested function, it is the method that binds Self.

from typing import Self
from ty_extensions import generic_context

class C:
    def f(self: "C"):
        def b(x: Self):
            reveal_type(x)  # revealed: Self@f
        reveal_type(generic_context(b))  # revealed: None

reveal_type(generic_context(C.f))  # revealed: None