
This adds a new `Type` variant for holding an instance of a typevar inside of a generic function or class. We don't handle specializing the typevars yet, but this should implement most of the typing rules for inside the generic function/class, where we don't know yet which specific type the typevar will be specialized to. This PR does _not_ yet handle the constraint that multiple occurrences of the typevar must be specialized to the _same_ time. (There is an existing test case for this in `generics/functions.md` which is still marked as TODO.) --------- Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com> Co-authored-by: Carl Meyer <carl@astral.sh>
6.8 KiB
Generic functions
Typevar must be used at least twice
If you're only using a typevar for a single parameter, you don't need the typevar — just use
object
(or the typevar's upper bound):
# TODO: error, should be (x: object)
def typevar_not_needed[T](x: T) -> None:
pass
# TODO: error, should be (x: int)
def bounded_typevar_not_needed[T: int](x: T) -> None:
pass
Typevars are only needed if you use them more than once. For instance, to specify that two parameters must both have the same type:
def two_params[T](x: T, y: T) -> T:
return x
or to specify that a return value is the same as a parameter:
def return_value[T](x: T) -> T:
return x
Each typevar must also appear somewhere in the parameter list:
def absurd[T]() -> T:
# There's no way to construct a T!
raise ValueError("absurd")
Inferring generic function parameter types
If the type of a generic function parameter is a typevar, then we can infer what type that typevar is bound to at each call site.
TODO: Note that some of the TODO revealed types have two options, since we haven't decided yet
whether we want to infer a more specific Literal
type where possible, or use heuristics to weaken
the inferred type to e.g. int
.
def f[T](x: T) -> T:
return x
# TODO: no error
# TODO: revealed: int or Literal[1]
# error: [invalid-argument-type]
reveal_type(f(1)) # revealed: T
# TODO: no error
# TODO: revealed: float
# error: [invalid-argument-type]
reveal_type(f(1.0)) # revealed: T
# TODO: no error
# TODO: revealed: bool or Literal[true]
# error: [invalid-argument-type]
reveal_type(f(True)) # revealed: T
# TODO: no error
# TODO: revealed: str or Literal["string"]
# error: [invalid-argument-type]
reveal_type(f("string")) # revealed: T
Inferring “deep” generic parameter types
The matching up of call arguments and discovery of constraints on typevars can be a recursive process for arbitrarily-nested generic types in parameters.
def f[T](x: list[T]) -> T:
return x[0]
# TODO: revealed: float
reveal_type(f([1.0, 2.0])) # revealed: T
Typevar constraints
If a type parameter has an upper bound, that upper bound constrains which types can be used for that typevar. This effectively adds the upper bound as an intersection to every appearance of the typevar in the function.
def good_param[T: int](x: T) -> None:
# TODO: revealed: T & int
reveal_type(x) # revealed: T
If the function is annotated as returning the typevar, this means that the upper bound is not
assignable to that typevar, since return types are contravariant. In bad
, we can infer that
x + 1
has type int
. But T
might be instantiated with a narrower type than int
, and so the
return value is not guaranteed to be compatible for all T: int
.
def good_return[T: int](x: T) -> T:
return x
def bad_return[T: int](x: T) -> T:
# error: [invalid-return-type] "Object of type `int` is not assignable to return type `T`"
return x + 1
All occurrences of the same typevar have the same type
If a typevar appears multiple times in a function signature, all occurrences have the same type.
def different_types[T, S](cond: bool, t: T, s: S) -> T:
if cond:
return t
else:
# error: [invalid-return-type] "Object of type `S` is not assignable to return type `T`"
return s
def same_types[T](cond: bool, t1: T, t2: T) -> T:
if cond:
return t1
else:
return t2
All occurrences of the same constrained typevar have the same type
The above is true even when the typevars are constrained. Here, both int
and str
have __add__
methods that are compatible with the return type, so the return
expression is always well-typed:
def same_constrained_types[T: (int, str)](t1: T, t2: T) -> T:
# TODO: no error
# error: [unsupported-operator] "Operator `+` is unsupported between objects of type `T` and `T`"
return t1 + t2
This is not the same as a union type, because of this additional constraint that the two
occurrences have the same type. In unions_are_different
, t1
and t2
might have different types,
and an int
and a str
cannot be added together:
def unions_are_different(t1: int | str, t2: int | str) -> int | str:
# error: [unsupported-operator] "Operator `+` is unsupported between objects of type `int | str` and `int | str`"
return t1 + t2
Typevar inference is a unification problem
When inferring typevar assignments in a generic function call, we cannot simply solve constraints eagerly for each parameter in turn. We must solve a unification problem involving all of the parameters simultaneously.
def two_params[T](x: T, y: T) -> T:
return x
# TODO: no error
# TODO: revealed: str
# error: [invalid-argument-type]
# error: [invalid-argument-type]
reveal_type(two_params("a", "b")) # revealed: T
# TODO: no error
# TODO: revealed: str | int
# error: [invalid-argument-type]
# error: [invalid-argument-type]
reveal_type(two_params("a", 1)) # revealed: T
def param_with_union[T](x: T | int, y: T) -> T:
return y
# TODO: no error
# TODO: revealed: str
# error: [invalid-argument-type]
reveal_type(param_with_union(1, "a")) # revealed: T
# TODO: no error
# TODO: revealed: str
# error: [invalid-argument-type]
# error: [invalid-argument-type]
reveal_type(param_with_union("a", "a")) # revealed: T
# TODO: no error
# TODO: revealed: int
# error: [invalid-argument-type]
reveal_type(param_with_union(1, 1)) # revealed: T
# TODO: no error
# TODO: revealed: str | int
# error: [invalid-argument-type]
# error: [invalid-argument-type]
reveal_type(param_with_union("a", 1)) # revealed: T
def tuple_param[T, S](x: T | S, y: tuple[T, S]) -> tuple[T, S]:
return y
# TODO: no error
# TODO: revealed: tuple[str, int]
# error: [invalid-argument-type]
# error: [invalid-argument-type]
reveal_type(tuple_param("a", ("a", 1))) # revealed: tuple[T, S]
# TODO: no error
# TODO: revealed: tuple[str, int]
# error: [invalid-argument-type]
# error: [invalid-argument-type]
reveal_type(tuple_param(1, ("a", 1))) # revealed: tuple[T, S]
Inferring nested generic function calls
We can infer type assignments in nested calls to multiple generic functions. If they use the same
type variable, we do not confuse the two; T@f
and T@g
have separate types in each example below.
def f[T](x: T) -> tuple[T, int]:
return (x, 1)
def g[T](x: T) -> T | None:
return x
# TODO: no error
# TODO: revealed: tuple[str | None, int]
# error: [invalid-argument-type]
# error: [invalid-argument-type]
reveal_type(f(g("a"))) # revealed: tuple[T, int]
# TODO: no error
# TODO: revealed: tuple[str, int] | None
# error: [invalid-argument-type]
# error: [invalid-argument-type]
reveal_type(g(f("a"))) # revealed: T | None