ruff/crates/red_knot_python_semantic/resources/mdtest/metaclass.md

4.5 KiB

Default

class M(type): ...

reveal_type(M.__class__)  # revealed: Literal[type]

object

reveal_type(object.__class__)  # revealed: Literal[type]

type

reveal_type(type.__class__)  # revealed: Literal[type]

Basic

class M(type): ...
class B(metaclass=M): ...

reveal_type(B.__class__)  # revealed: Literal[M]

Invalid metaclass

A class which doesn't inherit type (and/or doesn't implement a custom __new__ accepting the same arguments as type.__new__) isn't a valid metaclass.

class M: ...
class A(metaclass=M): ...

# TODO: emit a diagnostic for the invalid metaclass
reveal_type(A.__class__)  # revealed: Literal[M]

Linear inheritance

If a class is a subclass of a class with a custom metaclass, then the subclass will also have that metaclass.

class M(type): ...
class A(metaclass=M): ...
class B(A): ...

reveal_type(B.__class__)  # revealed: Literal[M]

Conflict (1)

The metaclass of a derived class must be a (non-strict) subclass of the metaclasses of all its bases. ("Strict subclass" is a synonym for "proper subclass"; a non-strict subclass can be a subclass or the class itself.)

class M1(type): ...
class M2(type): ...
class A(metaclass=M1): ...
class B(metaclass=M2): ...

# error: [conflicting-metaclass] "The metaclass of a derived class (`C`) must be a subclass of the metaclasses of all its bases, but `M1` (metaclass of base class `A`) and `M2` (metaclass of base class `B`) have no subclass relationship"
class C(A, B): ...

reveal_type(C.__class__)  # revealed: Unknown

Conflict (2)

The metaclass of a derived class must be a (non-strict) subclass of the metaclasses of all its bases. ("Strict subclass" is a synonym for "proper subclass"; a non-strict subclass can be a subclass or the class itself.)

class M1(type): ...
class M2(type): ...
class A(metaclass=M1): ...

# error: [conflicting-metaclass] "The metaclass of a derived class (`B`) must be a subclass of the metaclasses of all its bases, but `M2` (metaclass of `B`) and `M1` (metaclass of base class `A`) have no subclass relationship"
class B(A, metaclass=M2): ...

reveal_type(B.__class__)  # revealed: Unknown

Common metaclass

A class has two explicit bases, both of which have the same metaclass.

class M(type): ...
class A(metaclass=M): ...
class B(metaclass=M): ...
class C(A, B): ...

reveal_type(C.__class__)  # revealed: Literal[M]

Metaclass metaclass

A class has an explicit base with a custom metaclass. That metaclass itself has a custom metaclass.

class M1(type): ...
class M2(type, metaclass=M1): ...
class M3(M2): ...
class A(metaclass=M3): ...
class B(A): ...

reveal_type(A.__class__)  # revealed: Literal[M3]

Diamond inheritance

class M(type): ...
class M1(M): ...
class M2(M): ...
class M12(M1, M2): ...
class A(metaclass=M1): ...
class B(metaclass=M2): ...
class C(metaclass=M12): ...

# error: [conflicting-metaclass] "The metaclass of a derived class (`D`) must be a subclass of the metaclasses of all its bases, but `M1` (metaclass of base class `A`) and `M2` (metaclass of base class `B`) have no subclass relationship"
class D(A, B, C): ...

reveal_type(D.__class__)  # revealed: Unknown

Unknown

from nonexistent_module import UnknownClass  # error: [unresolved-import]

class C(UnknownClass): ...

# TODO: should be `type[type] & Unknown`
reveal_type(C.__class__)  # revealed: Literal[type]

class M(type): ...
class A(metaclass=M): ...
class B(A, UnknownClass): ...

# TODO: should be `type[M] & Unknown`
reveal_type(B.__class__)  # revealed: Literal[M]

Duplicate

class M(type): ...
class A(metaclass=M): ...
class B(A, A): ...  # error: [duplicate-base] "Duplicate base class `A`"

reveal_type(B.__class__)  # revealed: Literal[M]

Non-class

When a class has an explicit metaclass that is not a class, but is a callable that accepts type.__new__ arguments, we should return the meta type of its return type.

def f(*args, **kwargs) -> int: ...

class A(metaclass=f): ...

# TODO should be `type[int]`
reveal_type(A.__class__)  # revealed: @Todo

Cyclic

Retrieving the metaclass of a cyclically defined class should not cause an infinite loop.

class A(B): ...  # error: [cyclic-class-def]
class B(C): ...  # error: [cyclic-class-def]
class C(A): ...  # error: [cyclic-class-def]

reveal_type(A.__class__)  # revealed: Unknown

PEP 695 generic

class M(type): ...
class A[T: str](metaclass=M): ...

reveal_type(A.__class__)  # revealed: Literal[M]