
## Summary Implement linear-time variance inference for type variables (https://github.com/astral-sh/ty/issues/488). Inspired by Martin Huschenbett's [PyCon 2025 Talk](https://www.youtube.com/watch?v=7uixlNTOY4s&t=9705s). ## Test Plan update tests, add new tests, including for mutually recursive classes --------- Co-authored-by: Carl Meyer <carl@astral.sh>
26 KiB
Variance: PEP 695 syntax
[environment]
python-version = "3.12"
Type variables have a property called variance that affects the subtyping and assignability relations. Much more detail can be found in the spec. To summarize, each typevar is either covariant, contravariant, invariant, or bivariant. (Note that bivariance is not currently mentioned in the typing spec, but is a fourth case that we must consider.)
For all of the examples below, we will consider typevars T
and U
, two generic classes using
those typevars C[T]
and D[U]
, and two types A
and B
.
(Note that dynamic types like Any
never participate in subtyping, so C[Any]
is neither a subtype
nor supertype of any other specialization of C
, regardless of T
's variance. It is, however,
assignable to any specialization of C
, regardless of variance, via materialization.)
Covariance
With a covariant typevar, subtyping and assignability are in "alignment": if A <: B
and C <: D
,
then C[A] <: C[B]
and C[A] <: D[B]
.
Types that "produce" data on demand are covariant in their typevar. If you expect a sequence of
int
s, someone can safely provide a sequence of bool
s, since each bool
element that you would
get from the sequence is a valid int
.
from ty_extensions import is_assignable_to, is_equivalent_to, is_subtype_of, static_assert, Unknown
from typing import Any
class A: ...
class B(A): ...
class C[T]:
def receive(self) -> T:
raise ValueError
class D[U](C[U]):
pass
static_assert(is_assignable_to(C[B], C[A]))
static_assert(not is_assignable_to(C[A], C[B]))
static_assert(is_assignable_to(C[A], C[Any]))
static_assert(is_assignable_to(C[B], C[Any]))
static_assert(is_assignable_to(C[Any], C[A]))
static_assert(is_assignable_to(C[Any], C[B]))
static_assert(is_assignable_to(D[B], C[A]))
static_assert(not is_assignable_to(D[A], C[B]))
static_assert(is_assignable_to(D[A], C[Any]))
static_assert(is_assignable_to(D[B], C[Any]))
static_assert(is_assignable_to(D[Any], C[A]))
static_assert(is_assignable_to(D[Any], C[B]))
static_assert(is_subtype_of(C[B], C[A]))
static_assert(not is_subtype_of(C[A], C[B]))
static_assert(not is_subtype_of(C[A], C[Any]))
static_assert(not is_subtype_of(C[B], C[Any]))
static_assert(not is_subtype_of(C[Any], C[A]))
static_assert(not is_subtype_of(C[Any], C[B]))
static_assert(is_subtype_of(D[B], C[A]))
static_assert(not is_subtype_of(D[A], C[B]))
static_assert(not is_subtype_of(D[A], C[Any]))
static_assert(not is_subtype_of(D[B], C[Any]))
static_assert(not is_subtype_of(D[Any], C[A]))
static_assert(not is_subtype_of(D[Any], C[B]))
static_assert(is_equivalent_to(C[A], C[A]))
static_assert(is_equivalent_to(C[B], C[B]))
static_assert(not is_equivalent_to(C[B], C[A]))
static_assert(not is_equivalent_to(C[A], C[B]))
static_assert(not is_equivalent_to(C[A], C[Any]))
static_assert(not is_equivalent_to(C[B], C[Any]))
static_assert(not is_equivalent_to(C[Any], C[A]))
static_assert(not is_equivalent_to(C[Any], C[B]))
static_assert(not is_equivalent_to(D[A], C[A]))
static_assert(not is_equivalent_to(D[B], C[B]))
static_assert(not is_equivalent_to(D[B], C[A]))
static_assert(not is_equivalent_to(D[A], C[B]))
static_assert(not is_equivalent_to(D[A], C[Any]))
static_assert(not is_equivalent_to(D[B], C[Any]))
static_assert(not is_equivalent_to(D[Any], C[A]))
static_assert(not is_equivalent_to(D[Any], C[B]))
static_assert(is_equivalent_to(C[Any], C[Any]))
static_assert(is_equivalent_to(C[Any], C[Unknown]))
static_assert(not is_equivalent_to(D[Any], C[Any]))
static_assert(not is_equivalent_to(D[Any], C[Unknown]))
Contravariance
With a contravariant typevar, subtyping and assignability are in "opposition": if A <: B
and
C <: D
, then C[B] <: C[A]
and D[B] <: C[A]
.
Types that "consume" data are contravariant in their typevar. If you expect a consumer that receives
bool
s, someone can safely provide a consumer that expects to receive int
s, since each bool
that you pass into the consumer is a valid int
.
from ty_extensions import is_assignable_to, is_equivalent_to, is_subtype_of, static_assert, Unknown
from typing import Any
class A: ...
class B(A): ...
class C[T]:
def send(self, value: T): ...
class D[U](C[U]):
pass
static_assert(not is_assignable_to(C[B], C[A]))
static_assert(is_assignable_to(C[A], C[B]))
static_assert(is_assignable_to(C[A], C[Any]))
static_assert(is_assignable_to(C[B], C[Any]))
static_assert(is_assignable_to(C[Any], C[A]))
static_assert(is_assignable_to(C[Any], C[B]))
static_assert(not is_assignable_to(D[B], C[A]))
static_assert(is_assignable_to(D[A], C[B]))
static_assert(is_assignable_to(D[A], C[Any]))
static_assert(is_assignable_to(D[B], C[Any]))
static_assert(is_assignable_to(D[Any], C[A]))
static_assert(is_assignable_to(D[Any], C[B]))
static_assert(not is_subtype_of(C[B], C[A]))
static_assert(is_subtype_of(C[A], C[B]))
static_assert(not is_subtype_of(C[A], C[Any]))
static_assert(not is_subtype_of(C[B], C[Any]))
static_assert(not is_subtype_of(C[Any], C[A]))
static_assert(not is_subtype_of(C[Any], C[B]))
static_assert(not is_subtype_of(D[B], C[A]))
static_assert(is_subtype_of(D[A], C[B]))
static_assert(not is_subtype_of(D[A], C[Any]))
static_assert(not is_subtype_of(D[B], C[Any]))
static_assert(not is_subtype_of(D[Any], C[A]))
static_assert(not is_subtype_of(D[Any], C[B]))
static_assert(is_equivalent_to(C[A], C[A]))
static_assert(is_equivalent_to(C[B], C[B]))
static_assert(not is_equivalent_to(C[B], C[A]))
static_assert(not is_equivalent_to(C[A], C[B]))
static_assert(not is_equivalent_to(C[A], C[Any]))
static_assert(not is_equivalent_to(C[B], C[Any]))
static_assert(not is_equivalent_to(C[Any], C[A]))
static_assert(not is_equivalent_to(C[Any], C[B]))
static_assert(not is_equivalent_to(D[A], C[A]))
static_assert(not is_equivalent_to(D[B], C[B]))
static_assert(not is_equivalent_to(D[B], C[A]))
static_assert(not is_equivalent_to(D[A], C[B]))
static_assert(not is_equivalent_to(D[A], C[Any]))
static_assert(not is_equivalent_to(D[B], C[Any]))
static_assert(not is_equivalent_to(D[Any], C[A]))
static_assert(not is_equivalent_to(D[Any], C[B]))
static_assert(is_equivalent_to(C[Any], C[Any]))
static_assert(is_equivalent_to(C[Any], C[Unknown]))
static_assert(not is_equivalent_to(D[Any], C[Any]))
static_assert(not is_equivalent_to(D[Any], C[Unknown]))
Invariance
With an invariant typevar, only equivalent specializations of the generic class are subtypes of or assignable to each other.
This often occurs for types that are both producers and consumers, like a mutable list
.
Iterating over the elements in a list would work with a covariant typevar, just like with the
"producer" type above. Appending elements to a list would work with a contravariant typevar, just
like with the "consumer" type above. However, a typevar cannot be both covariant and contravariant
at the same time!
If you expect a mutable list of int
s, it's not safe for someone to provide you with a mutable list
of bool
s, since you might try to add an element to the list: if you try to add an int
, the list
would no longer only contain elements that are subtypes of bool
.
Conversely, if you expect a mutable list of bool
s, it's not safe for someone to provide you with a
mutable list of int
s, since you might try to extract elements from the list: you expect every
element that you extract to be a subtype of bool
, but the list can contain any int
.
In the end, if you expect a mutable list, you must always be given a list of exactly that type, since we can't know in advance which of the allowed methods you'll want to use.
from ty_extensions import is_assignable_to, is_equivalent_to, is_subtype_of, static_assert, Unknown
from typing import Any
class A: ...
class B(A): ...
class C[T]:
def send(self, value: T): ...
def receive(self) -> T:
raise ValueError
class D[U](C[U]):
pass
static_assert(not is_assignable_to(C[B], C[A]))
static_assert(not is_assignable_to(C[A], C[B]))
static_assert(is_assignable_to(C[A], C[Any]))
static_assert(is_assignable_to(C[B], C[Any]))
static_assert(is_assignable_to(C[Any], C[A]))
static_assert(is_assignable_to(C[Any], C[B]))
static_assert(not is_assignable_to(D[B], C[A]))
static_assert(not is_assignable_to(D[A], C[B]))
static_assert(is_assignable_to(D[A], C[Any]))
static_assert(is_assignable_to(D[B], C[Any]))
static_assert(is_assignable_to(D[Any], C[A]))
static_assert(is_assignable_to(D[Any], C[B]))
static_assert(not is_subtype_of(C[B], C[A]))
static_assert(not is_subtype_of(C[A], C[B]))
static_assert(not is_subtype_of(C[A], C[Any]))
static_assert(not is_subtype_of(C[B], C[Any]))
static_assert(not is_subtype_of(C[Any], C[A]))
static_assert(not is_subtype_of(C[Any], C[B]))
static_assert(not is_subtype_of(D[B], C[A]))
static_assert(not is_subtype_of(D[A], C[B]))
static_assert(not is_subtype_of(D[A], C[Any]))
static_assert(not is_subtype_of(D[B], C[Any]))
static_assert(not is_subtype_of(D[Any], C[A]))
static_assert(not is_subtype_of(D[Any], C[B]))
static_assert(is_equivalent_to(C[A], C[A]))
static_assert(is_equivalent_to(C[B], C[B]))
static_assert(not is_equivalent_to(C[B], C[A]))
static_assert(not is_equivalent_to(C[A], C[B]))
static_assert(not is_equivalent_to(C[A], C[Any]))
static_assert(not is_equivalent_to(C[B], C[Any]))
static_assert(not is_equivalent_to(C[Any], C[A]))
static_assert(not is_equivalent_to(C[Any], C[B]))
static_assert(not is_equivalent_to(D[A], C[A]))
static_assert(not is_equivalent_to(D[B], C[B]))
static_assert(not is_equivalent_to(D[B], C[A]))
static_assert(not is_equivalent_to(D[A], C[B]))
static_assert(not is_equivalent_to(D[A], C[Any]))
static_assert(not is_equivalent_to(D[B], C[Any]))
static_assert(not is_equivalent_to(D[Any], C[A]))
static_assert(not is_equivalent_to(D[Any], C[B]))
static_assert(is_equivalent_to(C[Any], C[Any]))
static_assert(is_equivalent_to(C[Any], C[Unknown]))
static_assert(not is_equivalent_to(D[Any], C[Any]))
static_assert(not is_equivalent_to(D[Any], C[Unknown]))
Bivariance
With a bivariant typevar, all specializations of the generic class are assignable to (and in fact, gradually equivalent to) each other, and all fully static specializations are subtypes of (and equivalent to) each other.
This is a bit of pathological case, which really only happens when the class doesn't use the typevar at all. (If it did, it would have to be covariant, contravariant, or invariant, depending on how the typevar was used.)
from ty_extensions import is_assignable_to, is_equivalent_to, is_subtype_of, static_assert, Unknown
from typing import Any
class A: ...
class B(A): ...
class C[T]:
pass
class D[U](C[U]):
pass
static_assert(is_assignable_to(C[B], C[A]))
static_assert(is_assignable_to(C[A], C[B]))
static_assert(is_assignable_to(C[A], C[Any]))
static_assert(is_assignable_to(C[B], C[Any]))
static_assert(is_assignable_to(C[Any], C[A]))
static_assert(is_assignable_to(C[Any], C[B]))
static_assert(is_assignable_to(D[B], C[A]))
static_assert(is_subtype_of(C[A], C[A]))
static_assert(is_assignable_to(D[A], C[B]))
static_assert(is_assignable_to(D[A], C[Any]))
static_assert(is_assignable_to(D[B], C[Any]))
static_assert(is_assignable_to(D[Any], C[A]))
static_assert(is_assignable_to(D[Any], C[B]))
static_assert(is_subtype_of(C[B], C[A]))
static_assert(is_subtype_of(C[A], C[B]))
static_assert(not is_subtype_of(C[A], C[Any]))
static_assert(not is_subtype_of(C[B], C[Any]))
static_assert(not is_subtype_of(C[Any], C[A]))
static_assert(not is_subtype_of(C[Any], C[B]))
static_assert(not is_subtype_of(C[Any], C[Any]))
static_assert(is_subtype_of(D[B], C[A]))
static_assert(is_subtype_of(D[A], C[B]))
static_assert(not is_subtype_of(D[A], C[Any]))
static_assert(not is_subtype_of(D[B], C[Any]))
static_assert(not is_subtype_of(D[Any], C[A]))
static_assert(not is_subtype_of(D[Any], C[B]))
static_assert(is_equivalent_to(C[A], C[A]))
static_assert(is_equivalent_to(C[B], C[B]))
static_assert(is_equivalent_to(C[B], C[A]))
static_assert(is_equivalent_to(C[A], C[B]))
static_assert(is_equivalent_to(C[A], C[Any]))
static_assert(is_equivalent_to(C[B], C[Any]))
static_assert(is_equivalent_to(C[Any], C[A]))
static_assert(is_equivalent_to(C[Any], C[B]))
static_assert(not is_equivalent_to(D[A], C[A]))
static_assert(not is_equivalent_to(D[B], C[B]))
static_assert(not is_equivalent_to(D[B], C[A]))
static_assert(not is_equivalent_to(D[A], C[B]))
static_assert(not is_equivalent_to(D[A], C[Any]))
static_assert(not is_equivalent_to(D[B], C[Any]))
static_assert(not is_equivalent_to(D[Any], C[A]))
static_assert(not is_equivalent_to(D[Any], C[B]))
static_assert(is_equivalent_to(C[Any], C[Any]))
static_assert(is_equivalent_to(C[Any], C[Unknown]))
static_assert(not is_equivalent_to(D[Any], C[Any]))
static_assert(not is_equivalent_to(D[Any], C[Unknown]))
Mutual Recursion
This example due to Martin Huschenbett's PyCon 2025 talk, Linear Time variance Inference for PEP 695
from ty_extensions import is_subtype_of, static_assert
from typing import Any
class A: ...
class B(A): ...
class C[X]:
def f(self) -> "D[X]":
return D()
def g(self, x: X) -> None: ...
class D[Y]:
def h(self) -> C[Y]:
return C()
C
is contravariant in X
, and D
in Y
:
C
has two occurrences ofX
X
occurs in the return type off
asD[X]
(X
is substituted in forY
)D
has one occurrence ofY
Y
occurs in the return type ofh
asC[Y]
X
occurs contravariantly as a parameter ing
Thus the variance of X
in C
depends on itself. We want to infer the least restrictive possible
variance, so in such cases we begin by assuming that the point where we detect the cycle is
bivariant.
If we thus assume X
is bivariant in C
, then Y
will be bivariant in D
, as D
's only
occurrence of Y
is in C
. Then we consider X
in C
once more. We have two occurrences: D[X]
covariantly in a return type, and X
contravariantly in an argument type. With one bivariant and
one contravariant occurrence, we update our inference of X
in C
to contravariant---the supremum
of contravariant and bivariant in the lattice.
Now that we've updated the variance of X
in C
, we re-evaluate Y
in D
. It only has the one
occurrence C[Y]
, which we now infer is contravariant, and so we infer contravariance for Y
in
D
as well.
Because the variance of X
in C
depends on that of Y
in D
, we have to re-evaluate now that
we've updated the latter to contravariant. The variance of X
in C
is now the supremum of
contravariant and contravariant---giving us contravariant---and so remains unchanged.
Once we've completed a turn around the cycle with nothing changed, we've reached a fixed-point---the
variance inference will not change any further---and so we finally conclude that both X
in C
and
Y
in D
are contravariant.
static_assert(not is_subtype_of(C[B], C[A]))
static_assert(is_subtype_of(C[A], C[B]))
static_assert(not is_subtype_of(C[A], C[Any]))
static_assert(not is_subtype_of(C[B], C[Any]))
static_assert(not is_subtype_of(C[Any], C[A]))
static_assert(not is_subtype_of(C[Any], C[B]))
static_assert(not is_subtype_of(D[B], D[A]))
static_assert(is_subtype_of(D[A], D[B]))
static_assert(not is_subtype_of(D[A], D[Any]))
static_assert(not is_subtype_of(D[B], D[Any]))
static_assert(not is_subtype_of(D[Any], D[A]))
static_assert(not is_subtype_of(D[Any], D[B]))
Class Attributes
Mutable Attributes
Normal attributes are mutable, and so make the enclosing class invariant in this typevar (see [inv]).
from ty_extensions import is_subtype_of, static_assert
class A: ...
class B(A): ...
class C[T]:
x: T
static_assert(not is_subtype_of(C[B], C[A]))
static_assert(not is_subtype_of(C[A], C[B]))
One might think that occurrences in the types of normal attributes are covariant, but they are mutable, and thus the occurrences are invariant.
Immutable Attributes
Immutable attributes can't be written to, and thus constrain the typevar to covariance, not invariance.
Final attributes
from typing import Final
from ty_extensions import is_subtype_of, static_assert
class A: ...
class B(A): ...
class C[T]:
x: Final[T]
static_assert(is_subtype_of(C[B], C[A]))
static_assert(not is_subtype_of(C[A], C[B]))
Underscore-prefixed attributes
Underscore-prefixed instance attributes are considered private, and thus are assumed not externally mutated.
from ty_extensions import is_subtype_of, static_assert
class A: ...
class B(A): ...
class C[T]:
_x: T
@property
def x(self) -> T:
return self._x
static_assert(is_subtype_of(C[B], C[A]))
static_assert(not is_subtype_of(C[A], C[B]))
class D[T]:
def __init__(self, x: T):
self._x = x
@property
def x(self) -> T:
return self._x
static_assert(is_subtype_of(D[B], D[A]))
static_assert(not is_subtype_of(D[A], D[B]))
Frozen dataclasses in Python 3.12 and earlier
from dataclasses import dataclass, field
from ty_extensions import is_subtype_of, static_assert
class A: ...
class B(A): ...
@dataclass(frozen=True)
class D[U]:
y: U
static_assert(is_subtype_of(D[B], D[A]))
static_assert(not is_subtype_of(D[A], D[B]))
@dataclass(frozen=True)
class E[U]:
y: U = field()
static_assert(is_subtype_of(E[B], E[A]))
static_assert(not is_subtype_of(E[A], E[B]))
Frozen dataclasses in Python 3.13 and later
[environment]
python-version = "3.13"
Python 3.13 introduced a new synthesized __replace__
method on dataclasses, which uses every field
type in a contravariant position (as a parameter to __replace__
). This means that frozen
dataclasses on Python 3.13+ can't be covariant in their field types.
from dataclasses import dataclass
from ty_extensions import is_subtype_of, static_assert
class A: ...
class B(A): ...
@dataclass(frozen=True)
class D[U]:
y: U
static_assert(not is_subtype_of(D[B], D[A]))
static_assert(not is_subtype_of(D[A], D[B]))
NamedTuple
from typing import NamedTuple
from ty_extensions import is_subtype_of, static_assert
class A: ...
class B(A): ...
class E[V](NamedTuple):
z: V
static_assert(is_subtype_of(E[B], E[A]))
static_assert(not is_subtype_of(E[A], E[B]))
A subclass of a NamedTuple
can still be covariant:
class D[T](E[T]):
pass
static_assert(is_subtype_of(D[B], D[A]))
static_assert(not is_subtype_of(D[A], D[B]))
But adding a new generic attribute on the subclass makes it invariant (the added attribute is not a
NamedTuple
field, and thus not immutable):
class C[T](E[T]):
w: T
static_assert(not is_subtype_of(C[B], C[A]))
static_assert(not is_subtype_of(C[A], C[B]))
Properties
Properties constrain to covariance if they are get-only and invariant if they are get-set:
from ty_extensions import static_assert, is_subtype_of
class A: ...
class B(A): ...
class C[T]:
@property
def x(self) -> T | None:
return None
class D[U]:
@property
def y(self) -> U | None:
return None
@y.setter
def y(self, value: U): ...
static_assert(is_subtype_of(C[B], C[A]))
static_assert(not is_subtype_of(C[A], C[B]))
static_assert(not is_subtype_of(D[B], D[A]))
static_assert(not is_subtype_of(D[A], D[B]))
Implicit Attributes
Implicit attributes work like normal ones
from ty_extensions import static_assert, is_subtype_of
class A: ...
class B(A): ...
class C[T]:
def f(self) -> None:
self.x: T | None = None
static_assert(not is_subtype_of(C[B], C[A]))
static_assert(not is_subtype_of(C[A], C[B]))
Constructors: excluding __init__
and __new__
We consider it invalid to call __init__
explicitly on an existing object. Likewise, __new__
is
only used at the beginning of an object's life. As such, we don't need to worry about the variance
impact of these methods.
from ty_extensions import static_assert, is_subtype_of
class A: ...
class B(A): ...
class C[T]:
def __init__(self, x: T): ...
def __new__(self, x: T): ...
static_assert(is_subtype_of(C[B], C[A]))
static_assert(is_subtype_of(C[A], C[B]))
This example is then bivariant because it doesn't use T
outside of the two exempted methods.
This holds likewise for dataclasses with synthesized __init__
:
from dataclasses import dataclass
@dataclass(init=True, frozen=True)
class D[T]:
x: T
# Covariant due to the read-only T-typed attribute; the `__init__` is ignored and doesn't make it
# invariant:
static_assert(is_subtype_of(D[B], D[A]))
static_assert(not is_subtype_of(D[A], D[B]))
Union Types
Union types are covariant in all their members. If A <: B
, then A | C <: B | C
and
C | A <: C | B
.
from ty_extensions import is_assignable_to, is_subtype_of, static_assert
class A: ...
class B(A): ...
class C: ...
# Union types are covariant in their members
static_assert(is_subtype_of(B | C, A | C))
static_assert(is_subtype_of(C | B, C | A))
static_assert(not is_subtype_of(A | C, B | C))
static_assert(not is_subtype_of(C | A, C | B))
# Assignability follows the same pattern
static_assert(is_assignable_to(B | C, A | C))
static_assert(is_assignable_to(C | B, C | A))
static_assert(not is_assignable_to(A | C, B | C))
static_assert(not is_assignable_to(C | A, C | B))
Intersection Types
Intersection types cannot be expressed directly in Python syntax, but they occur when type narrowing creates constraints through control flow. In ty's representation, intersection types are covariant in their positive conjuncts and contravariant in their negative conjuncts.
from ty_extensions import is_assignable_to, is_subtype_of, static_assert, Intersection, Not
class A: ...
class B(A): ...
class C: ...
# Test covariance in positive conjuncts
# If B <: A, then Intersection[X, B] <: Intersection[X, A]
static_assert(is_subtype_of(Intersection[C, B], Intersection[C, A]))
static_assert(not is_subtype_of(Intersection[C, A], Intersection[C, B]))
static_assert(is_assignable_to(Intersection[C, B], Intersection[C, A]))
static_assert(not is_assignable_to(Intersection[C, A], Intersection[C, B]))
# Test contravariance in negative conjuncts
# If B <: A, then Intersection[X, Not[A]] <: Intersection[X, Not[B]]
# (excluding supertype A is more restrictive than excluding subtype B)
static_assert(is_subtype_of(Intersection[C, Not[A]], Intersection[C, Not[B]]))
static_assert(not is_subtype_of(Intersection[C, Not[B]], Intersection[C, Not[A]]))
static_assert(is_assignable_to(Intersection[C, Not[A]], Intersection[C, Not[B]]))
static_assert(not is_assignable_to(Intersection[C, Not[B]], Intersection[C, Not[A]]))
Subclass Types (type[T])
The type[T]
construct represents the type of classes that are subclasses of T
. It is covariant
in T
because if A <: B
, then type[A] <: type[B]
holds.
from ty_extensions import is_assignable_to, is_subtype_of, static_assert
class A: ...
class B(A): ...
# type[T] is covariant in T
static_assert(is_subtype_of(type[B], type[A]))
static_assert(not is_subtype_of(type[A], type[B]))
static_assert(is_assignable_to(type[B], type[A]))
static_assert(not is_assignable_to(type[A], type[B]))
# With generic classes using type[T]
class ClassContainer[T]:
def __init__(self, cls: type[T]) -> None:
self.cls = cls
def create_instance(self) -> T:
return self.cls()
# ClassContainer is covariant in T due to type[T]
static_assert(is_subtype_of(ClassContainer[B], ClassContainer[A]))
static_assert(not is_subtype_of(ClassContainer[A], ClassContainer[B]))
static_assert(is_assignable_to(ClassContainer[B], ClassContainer[A]))
static_assert(not is_assignable_to(ClassContainer[A], ClassContainer[B]))
# Practical example: you can pass a ClassContainer[B] where ClassContainer[A] is expected
# because type[B] can safely be used where type[A] is expected
def use_a_class_container(container: ClassContainer[A]) -> A:
return container.create_instance()
b_container = ClassContainer[B](B)
a_instance: A = use_a_class_container(b_container) # This should work
Inheriting from generic classes with inferred variance
When inheriting from a generic class with our type variable substituted in, we count its occurrences
as well. In the following example, T
is covariant in C
, and contravariant in the subclass D
if
you only count its own occurrences. Because we count both then, T
is invariant in D
.
from ty_extensions import is_subtype_of, static_assert
class A:
pass
class B(A):
pass
class C[T]:
def f() -> T | None:
pass
static_assert(is_subtype_of(C[B], C[A]))
static_assert(not is_subtype_of(C[A], C[B]))
class D[T](C[T]):
def g(x: T) -> None:
pass
static_assert(not is_subtype_of(D[B], D[A]))
static_assert(not is_subtype_of(D[A], D[B]))
Inheriting from generic classes with explicit variance
from typing import TypeVar, Generic
from ty_extensions import is_subtype_of, static_assert
T = TypeVar("T")
T_co = TypeVar("T_co", covariant=True)
T_contra = TypeVar("T_contra", contravariant=True)
class A:
pass
class B(A):
pass
class Invariant(Generic[T]):
pass
static_assert(not is_subtype_of(Invariant[B], Invariant[A]))
static_assert(not is_subtype_of(Invariant[A], Invariant[B]))
class DerivedInvariant[T](Invariant[T]):
pass
static_assert(not is_subtype_of(DerivedInvariant[B], DerivedInvariant[A]))
static_assert(not is_subtype_of(DerivedInvariant[A], DerivedInvariant[B]))
class Covariant(Generic[T_co]):
pass
static_assert(is_subtype_of(Covariant[B], Covariant[A]))
static_assert(not is_subtype_of(Covariant[A], Covariant[B]))
class DerivedCovariant[T](Covariant[T]):
pass
static_assert(is_subtype_of(DerivedCovariant[B], DerivedCovariant[A]))
static_assert(not is_subtype_of(DerivedCovariant[A], DerivedCovariant[B]))
class Contravariant(Generic[T_contra]):
pass
static_assert(not is_subtype_of(Contravariant[B], Contravariant[A]))
static_assert(is_subtype_of(Contravariant[A], Contravariant[B]))
class DerivedContravariant[T](Contravariant[T]):
pass
static_assert(not is_subtype_of(DerivedContravariant[B], DerivedContravariant[A]))
static_assert(is_subtype_of(DerivedContravariant[A], DerivedContravariant[B]))