ruff/crates/red_knot_python_semantic/resources/mdtest/assignment/annotations.md
Dhruv Manilawala 9ec690b8f8
[red-knot] Add support for string annotations (#14151)
## Summary

This PR adds support for parsing and inferring types within string
annotations.

### Implementation (attempt 1)

This is preserved in
6217f48924.

The implementation here would separate the inference of string
annotations in the deferred query. This requires the following:
* Two ways of evaluating the deferred definitions - lazily and eagerly. 
* An eager evaluation occurs right outside the definition query which in
this case would be in `binding_ty` and `declaration_ty`.
* A lazy evaluation occurs on demand like using the
`definition_expression_ty` to determine the function return type and
class bases.
* The above point means that when trying to get the binding type for a
variable in an annotated assignment, the definition query won't include
the type. So, it'll require going through the deferred query to get the
type.

This has the following limitations:
* Nested string annotations, although not necessarily a useful feature,
is difficult to implement unless we convert the implementation in an
infinite loop
* Partial string annotations require complex layout because inferring
the types for stringified and non-stringified parts of the annotation
are done in separate queries. This means we need to maintain additional
information

### Implementation (attempt 2)

This is the final diff in this PR.

The implementation here does the complete inference of string annotation
in the same definition query by maintaining certain state while trying
to infer different parts of an expression and take decisions
accordingly. These are:
* Allow names that are part of a string annotation to not exists in the
symbol table. For example, in `x: "Foo"`, if the "Foo" symbol is not
defined then it won't exists in the symbol table even though it's being
used. This is an invariant which is being allowed only for symbols in a
string annotation.
* Similarly, lookup name is updated to do the same and if the symbol
doesn't exists, then it's not bounded.
* Store the final type of a string annotation on the string expression
itself and not for any of the sub-expressions that are created after
parsing. This is because those sub-expressions won't exists in the
semantic index.

Design document:
https://www.notion.so/astral-sh/String-Annotations-12148797e1ca801197a9f146641e5b71?pvs=4

Closes: #13796 

## Test Plan

* Add various test cases in our markdown framework
* Run `red_knot` on LibCST (contains a lot of string annotations,
specifically
https://github.com/Instagram/LibCST/blob/main/libcst/matchers/_matcher_base.py),
FastAPI (good amount of annotated code including `typing.Literal`) and
compare against the `main` branch output
2024-11-15 04:10:18 +00:00

3.3 KiB

Assignment with annotations

Annotation only transparent to local inference

x = 1
x: int
y = x

reveal_type(y)  # revealed: Literal[1]

Violates own annotation

x: int = "foo"  # error: [invalid-assignment] "Object of type `Literal["foo"]` is not assignable to `int`"

Violates previous annotation

x: int
x = "foo"  # error: [invalid-assignment] "Object of type `Literal["foo"]` is not assignable to `int`"

Tuple annotations are understood

from typing_extensions import Unpack

a: tuple[()] = ()
b: tuple[int] = (42,)
c: tuple[str, int] = ("42", 42)
d: tuple[tuple[str, str], tuple[int, int]] = (("foo", "foo"), (42, 42))
e: tuple[str, ...] = ()
# TODO: we should not emit this error
# error: [call-possibly-unbound-method] "Method `__class_getitem__` of type `Literal[tuple]` is possibly unbound"
f: tuple[str, *tuple[int, ...], bytes] = ("42", b"42")
g: tuple[str, Unpack[tuple[int, ...]], bytes] = ("42", b"42")
h: tuple[list[int], list[int]] = ([], [])
i: tuple[str | int, str | int] = (42, 42)
j: tuple[str | int] = (42,)
from module import a, b, c, d, e, f, g, h, i, j

reveal_type(a)  # revealed: tuple[()]
reveal_type(b)  # revealed: tuple[int]
reveal_type(c)  # revealed: tuple[str, int]
reveal_type(d)  # revealed: tuple[tuple[str, str], tuple[int, int]]

# TODO: homogenous tuples, PEP-646 tuples
reveal_type(e)  # revealed: @Todo
reveal_type(f)  # revealed: @Todo
reveal_type(g)  # revealed: @Todo

# TODO: support more kinds of type expressions in annotations
reveal_type(h)  # revealed: @Todo

reveal_type(i)  # revealed: tuple[str | int, str | int]
reveal_type(j)  # revealed: tuple[str | int]

Incorrect tuple assignments are complained about

# error: [invalid-assignment] "Object of type `tuple[Literal[1], Literal[2]]` is not assignable to `tuple[()]`"
a: tuple[()] = (1, 2)

# error: [invalid-assignment] "Object of type `tuple[Literal["foo"]]` is not assignable to `tuple[int]`"
b: tuple[int] = ("foo",)

# error: [invalid-assignment] "Object of type `tuple[list, Literal["foo"]]` is not assignable to `tuple[str | int, str]`"
c: tuple[str | int, str] = ([], "foo")

PEP-604 annotations are supported

def foo() -> str | int | None:
    return None

reveal_type(foo())  # revealed: str | int | None

def bar() -> str | str | None:
    return None

reveal_type(bar())  # revealed: str | None

def baz() -> str | str:
    return "Hello, world!"

reveal_type(baz())  # revealed: str

Attribute expressions in type annotations are understood

import builtins

int = "foo"
a: builtins.int = 42

# error: [invalid-assignment] "Object of type `Literal["bar"]` is not assignable to `int`"
b: builtins.int = "bar"

c: builtins.tuple[builtins.tuple[builtins.int, builtins.int], builtins.int] = ((42, 42), 42)

# error: [invalid-assignment] "Object of type `Literal["foo"]` is not assignable to `tuple[tuple[int, int], int]`"
c: builtins.tuple[builtins.tuple[builtins.int, builtins.int], builtins.int] = "foo"

Future annotations are deferred

from __future__ import annotations

x: Foo

class Foo:
    pass

x = Foo()
reveal_type(x)  # revealed: Foo

Annotations in stub files are deferred

x: Foo

class Foo:
    pass

x = Foo()
reveal_type(x)  # revealed: Foo