Extract gmath_nodes from gcore::ops, create mods debug and extract_xy (#2764)

This commit is contained in:
Firestar99 2025-06-28 00:04:24 +02:00 committed by GitHub
parent 9c4ab34a58
commit ecd7999ca7
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
16 changed files with 668 additions and 580 deletions

View file

@ -14,9 +14,6 @@ wgpu = ["dep:wgpu"]
dealloc_nodes = []
[dependencies]
# Local dependencies
math-parser = { workspace = true }
# Workspace dependencies
bytemuck = { workspace = true }
node-macro = { workspace = true }

View file

@ -0,0 +1,26 @@
use crate::raster_types::{CPU, RasterDataTable};
use crate::{Color, Ctx};
/// Meant for debugging purposes, not general use. Returns the size of the input type in bytes.
#[node_macro::node(category("Debug"))]
fn size_of(_: impl Ctx, ty: crate::Type) -> Option<usize> {
ty.size()
}
/// Meant for debugging purposes, not general use. Wraps the input value in the Some variant of an Option.
#[node_macro::node(category("Debug"))]
fn some<T>(_: impl Ctx, #[implementations(f64, f32, u32, u64, String, Color)] input: T) -> Option<T> {
Some(input)
}
/// Meant for debugging purposes, not general use. Unwraps the input value from an Option, returning the default value if the input is None.
#[node_macro::node(category("Debug"))]
fn unwrap<T: Default>(_: impl Ctx, #[implementations(Option<f64>, Option<f32>, Option<u32>, Option<u64>, Option<String>, Option<Color>)] input: Option<T>) -> T {
input.unwrap_or_default()
}
/// Meant for debugging purposes, not general use. Clones the input value.
#[node_macro::node(category("Debug"))]
fn clone<'i, T: Clone + 'i>(_: impl Ctx, #[implementations(&RasterDataTable<CPU>)] value: &'i T) -> T {
value.clone()
}

View file

@ -0,0 +1,21 @@
use crate::Ctx;
use dyn_any::DynAny;
use glam::{DVec2, IVec2, UVec2};
/// Obtain the X or Y component of a coordinate.
#[node_macro::node(name("Extract XY"), category("Math: Vector"))]
fn extract_xy<T: Into<DVec2>>(_: impl Ctx, #[implementations(DVec2, IVec2, UVec2)] vector: T, axis: XY) -> f64 {
match axis {
XY::X => vector.into().x,
XY::Y => vector.into().y,
}
}
/// The X or Y component of a coordinate.
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq, Hash, DynAny, node_macro::ChoiceType, specta::Type, serde::Serialize, serde::Deserialize)]
#[widget(Dropdown)]
pub enum XY {
#[default]
X,
Y,
}

View file

@ -8,6 +8,8 @@ pub mod bounds;
pub mod color;
pub mod consts;
pub mod context;
pub mod debug;
pub mod extract_xy;
pub mod generic;
pub mod gradient;
mod graphic_element;

View file

@ -1,511 +1,5 @@
use crate::Ctx;
use crate::raster_types::{CPU, RasterDataTable};
use crate::registry::types::{Fraction, Percentage};
use crate::vector::style::GradientStops;
use crate::{Color, Node};
use dyn_any::DynAny;
use glam::{DVec2, IVec2, UVec2};
use math_parser::ast;
use math_parser::context::{EvalContext, NothingMap, ValueProvider};
use math_parser::value::{Number, Value};
use num_traits::Pow;
use rand::{Rng, SeedableRng};
use crate::Node;
use std::marker::PhantomData;
use std::ops::{Add, Div, Mul, Rem, Sub};
/// The struct that stores the context for the maths parser.
/// This is currently just limited to supplying `a` and `b` until we add better node graph support and UI for variadic inputs.
struct MathNodeContext {
a: f64,
b: f64,
}
impl ValueProvider for MathNodeContext {
fn get_value(&self, name: &str) -> Option<Value> {
if name.eq_ignore_ascii_case("a") {
Some(Value::from_f64(self.a))
} else if name.eq_ignore_ascii_case("b") {
Some(Value::from_f64(self.b))
} else {
None
}
}
}
/// Calculates a mathematical expression with input values "A" and "B"
#[node_macro::node(category("Math: Arithmetic"), properties("math_properties"))]
fn math<U: num_traits::float::Float>(
_: impl Ctx,
/// The value of "A" when calculating the expression
#[implementations(f64, f32)]
operand_a: U,
/// A math expression that may incorporate "A" and/or "B", such as "sqrt(A + B) - B^2"
#[default(A + B)]
expression: String,
/// The value of "B" when calculating the expression
#[implementations(f64, f32)]
#[default(1.)]
operand_b: U,
) -> U {
let (node, _unit) = match ast::Node::try_parse_from_str(&expression) {
Ok(expr) => expr,
Err(e) => {
warn!("Invalid expression: `{expression}`\n{e:?}");
return U::from(0.).unwrap();
}
};
let context = EvalContext::new(
MathNodeContext {
a: operand_a.to_f64().unwrap(),
b: operand_b.to_f64().unwrap(),
},
NothingMap,
);
let value = match node.eval(&context) {
Ok(value) => value,
Err(e) => {
warn!("Expression evaluation error: {e:?}");
return U::from(0.).unwrap();
}
};
let Value::Number(num) = value;
match num {
Number::Real(val) => U::from(val).unwrap(),
Number::Complex(c) => U::from(c.re).unwrap(),
}
}
/// The addition operation (+) calculates the sum of two numbers.
#[node_macro::node(category("Math: Arithmetic"))]
fn add<U: Add<T>, T>(
_: impl Ctx,
#[implementations(f64, &f64, f64, &f64, f32, &f32, f32, &f32, u32, &u32, u32, &u32, DVec2, f64, DVec2)] augend: U,
#[implementations(f64, f64, &f64, &f64, f32, f32, &f32, &f32, u32, u32, &u32, &u32, DVec2, DVec2, f64)] addend: T,
) -> <U as Add<T>>::Output {
augend + addend
}
/// The subtraction operation (-) calculates the difference between two numbers.
#[node_macro::node(category("Math: Arithmetic"))]
fn subtract<U: Sub<T>, T>(
_: impl Ctx,
#[implementations(f64, &f64, f64, &f64, f32, &f32, f32, &f32, u32, &u32, u32, &u32, DVec2, f64, DVec2)] minuend: U,
#[implementations(f64, f64, &f64, &f64, f32, f32, &f32, &f32, u32, u32, &u32, &u32, DVec2, DVec2, f64)] subtrahend: T,
) -> <U as Sub<T>>::Output {
minuend - subtrahend
}
/// The multiplication operation (×) calculates the product of two numbers.
#[node_macro::node(category("Math: Arithmetic"))]
fn multiply<U: Mul<T>, T>(
_: impl Ctx,
#[implementations(f64, &f64, f64, &f64, f32, &f32, f32, &f32, u32, &u32, u32, &u32, DVec2, f64, DVec2)] multiplier: U,
#[default(1.)]
#[implementations(f64, f64, &f64, &f64, f32, f32, &f32, &f32, u32, u32, &u32, &u32, DVec2, DVec2, f64)]
multiplicand: T,
) -> <U as Mul<T>>::Output {
multiplier * multiplicand
}
/// The division operation (÷) calculates the quotient of two numbers.
///
/// Produces 0 if the denominator is 0.
#[node_macro::node(category("Math: Arithmetic"))]
fn divide<U: Div<T> + Default + PartialEq, T: Default + PartialEq>(
_: impl Ctx,
#[implementations(f64, f64, f32, f32, u32, u32, DVec2, DVec2, f64)] numerator: U,
#[default(1.)]
#[implementations(f64, f64, f32, f32, u32, u32, DVec2, f64, DVec2)]
denominator: T,
) -> <U as Div<T>>::Output
where
<U as Div<T>>::Output: Default,
{
if denominator == T::default() {
return <U as Div<T>>::Output::default();
}
numerator / denominator
}
/// The modulo operation (%) calculates the remainder from the division of two numbers. The sign of the result shares the sign of the numerator unless "Always Positive" is enabled.
#[node_macro::node(category("Math: Arithmetic"))]
fn modulo<U: Rem<T, Output: Add<T, Output: Rem<T, Output = U::Output>>>, T: Copy>(
_: impl Ctx,
#[implementations(f64, &f64, f64, &f64, f32, &f32, f32, &f32, u32, &u32, u32, &u32, DVec2, DVec2, f64)] numerator: U,
#[default(2.)]
#[implementations(f64, f64, &f64, &f64, f32, f32, &f32, &f32, u32, u32, &u32, &u32, DVec2, f64, DVec2)]
modulus: T,
always_positive: bool,
) -> <U as Rem<T>>::Output {
if always_positive { (numerator % modulus + modulus) % modulus } else { numerator % modulus }
}
/// The exponent operation (^) calculates the result of raising a number to a power.
#[node_macro::node(category("Math: Arithmetic"))]
fn exponent<U: Pow<T>, T>(
_: impl Ctx,
#[implementations(f64, &f64, f64, &f64, f32, &f32, f32, &f32, u32, &u32, u32, &u32)] base: U,
#[default(2.)]
#[implementations(f64, f64, &f64, &f64, f32, f32, &f32, &f32, u32, u32, &u32, &u32)]
power: T,
) -> <U as num_traits::Pow<T>>::Output {
base.pow(power)
}
/// The square root operation (√) calculates the nth root of a number, equivalent to raising the number to the power of 1/n.
#[node_macro::node(category("Math: Arithmetic"))]
fn root<U: num_traits::float::Float>(
_: impl Ctx,
#[default(2.)]
#[implementations(f64, f32)]
radicand: U,
#[default(2.)]
#[implementations(f64, f32)]
degree: U,
) -> U {
if degree == U::from(2.).unwrap() {
radicand.sqrt()
} else if degree == U::from(3.).unwrap() {
radicand.cbrt()
} else {
radicand.powf(U::from(1.).unwrap() / degree)
}
}
/// The logarithmic function (log) calculates the logarithm of a number with a specified base. If the natural logarithm function (ln) is desired, set the base to "e".
#[node_macro::node(category("Math: Arithmetic"))]
fn logarithm<U: num_traits::float::Float>(
_: impl Ctx,
#[implementations(f64, f32)] value: U,
#[default(2.)]
#[implementations(f64, f32)]
base: U,
) -> U {
if base == U::from(2.).unwrap() {
value.log2()
} else if base == U::from(10.).unwrap() {
value.log10()
} else if base - U::from(std::f64::consts::E).unwrap() < U::epsilon() * U::from(1e6).unwrap() {
value.ln()
} else {
value.log(base)
}
}
/// The sine trigonometric function (sin) calculates the ratio of the angle's opposite side length to its hypotenuse length.
#[node_macro::node(category("Math: Trig"))]
fn sine<U: num_traits::float::Float>(_: impl Ctx, #[implementations(f64, f32)] theta: U, radians: bool) -> U {
if radians { theta.sin() } else { theta.to_radians().sin() }
}
/// The cosine trigonometric function (cos) calculates the ratio of the angle's adjacent side length to its hypotenuse length.
#[node_macro::node(category("Math: Trig"))]
fn cosine<U: num_traits::float::Float>(_: impl Ctx, #[implementations(f64, f32)] theta: U, radians: bool) -> U {
if radians { theta.cos() } else { theta.to_radians().cos() }
}
/// The tangent trigonometric function (tan) calculates the ratio of the angle's opposite side length to its adjacent side length.
#[node_macro::node(category("Math: Trig"))]
fn tangent<U: num_traits::float::Float>(_: impl Ctx, #[implementations(f64, f32)] theta: U, radians: bool) -> U {
if radians { theta.tan() } else { theta.to_radians().tan() }
}
/// The inverse sine trigonometric function (asin) calculates the angle whose sine is the specified value.
#[node_macro::node(category("Math: Trig"))]
fn sine_inverse<U: num_traits::float::Float>(_: impl Ctx, #[implementations(f64, f32)] value: U, radians: bool) -> U {
if radians { value.asin() } else { value.asin().to_degrees() }
}
/// The inverse cosine trigonometric function (acos) calculates the angle whose cosine is the specified value.
#[node_macro::node(category("Math: Trig"))]
fn cosine_inverse<U: num_traits::float::Float>(_: impl Ctx, #[implementations(f64, f32)] value: U, radians: bool) -> U {
if radians { value.acos() } else { value.acos().to_degrees() }
}
/// The inverse tangent trigonometric function (atan or atan2, depending on input type) calculates:
/// atan: the angle whose tangent is the specified scalar number.
/// atan2: the angle of a ray from the origin to the specified coordinate.
#[node_macro::node(category("Math: Trig"))]
fn tangent_inverse<U: TangentInverse>(_: impl Ctx, #[implementations(f64, f32, DVec2)] value: U, radians: bool) -> U::Output {
value.atan(radians)
}
pub trait TangentInverse {
type Output: num_traits::float::Float;
fn atan(self, radians: bool) -> Self::Output;
}
impl TangentInverse for f32 {
type Output = f32;
fn atan(self, radians: bool) -> Self::Output {
if radians { self.atan() } else { self.atan().to_degrees() }
}
}
impl TangentInverse for f64 {
type Output = f64;
fn atan(self, radians: bool) -> Self::Output {
if radians { self.atan() } else { self.atan().to_degrees() }
}
}
impl TangentInverse for DVec2 {
type Output = f64;
fn atan(self, radians: bool) -> Self::Output {
if radians { self.y.atan2(self.x) } else { self.y.atan2(self.x).to_degrees() }
}
}
/// The random function (rand) converts a seed into a random number within the specified range, inclusive of the minimum and exclusive of the maximum. The minimum and maximum values are automatically swapped if they are reversed.
#[node_macro::node(category("Math: Numeric"))]
fn random<U: num_traits::float::Float>(
_: impl Ctx,
_primary: (),
seed: u64,
#[implementations(f64, f32)]
#[default(0.)]
min: U,
#[implementations(f64, f32)]
#[default(1.)]
max: U,
) -> f64 {
let mut rng = rand::rngs::StdRng::seed_from_u64(seed);
let result = rng.random::<f64>();
let (min, max) = if min < max { (min, max) } else { (max, min) };
let (min, max) = (min.to_f64().unwrap(), max.to_f64().unwrap());
result * (max - min) + min
}
/// Convert a number to an integer of the type u32, which may be the required type for certain node inputs. This will be removed in the future when automatic type conversion is implemented.
#[node_macro::node(name("To u32"), category("Math: Numeric"))]
fn to_u32<U: num_traits::float::Float>(_: impl Ctx, #[implementations(f64, f32)] value: U) -> u32 {
let value = U::clamp(value, U::from(0.).unwrap(), U::from(u32::MAX as f64).unwrap());
value.to_u32().unwrap()
}
/// Convert a number to an integer of the type u64, which may be the required type for certain node inputs. This will be removed in the future when automatic type conversion is implemented.
#[node_macro::node(name("To u64"), category("Math: Numeric"))]
fn to_u64<U: num_traits::float::Float>(_: impl Ctx, #[implementations(f64, f32)] value: U) -> u64 {
let value = U::clamp(value, U::from(0.).unwrap(), U::from(u64::MAX as f64).unwrap());
value.to_u64().unwrap()
}
/// Convert an integer to a decimal number of the type f64, which may be the required type for certain node inputs. This will be removed in the future when automatic type conversion is implemented.
#[node_macro::node(name("To f64"), category("Math: Numeric"))]
fn to_f64<U: num_traits::int::PrimInt>(_: impl Ctx, #[implementations(u32, u64)] value: U) -> f64 {
value.to_f64().unwrap()
}
/// The rounding function (round) maps an input value to its nearest whole number. Halfway values are rounded away from zero.
#[node_macro::node(category("Math: Numeric"))]
fn round<U: num_traits::float::Float>(_: impl Ctx, #[implementations(f64, f32)] value: U) -> U {
value.round()
}
/// The floor function (floor) reduces an input value to its nearest larger whole number, unless the input number is already whole.
#[node_macro::node(category("Math: Numeric"))]
fn floor<U: num_traits::float::Float>(_: impl Ctx, #[implementations(f64, f32)] value: U) -> U {
value.floor()
}
/// The ceiling function (ceil) increases an input value to its nearest smaller whole number, unless the input number is already whole.
#[node_macro::node(category("Math: Numeric"))]
fn ceiling<U: num_traits::float::Float>(_: impl Ctx, #[implementations(f64, f32)] value: U) -> U {
value.ceil()
}
/// The absolute value function (abs) removes the negative sign from an input value, if present.
#[node_macro::node(category("Math: Numeric"))]
fn absolute_value<U: num_traits::float::Float>(_: impl Ctx, #[implementations(f64, f32)] value: U) -> U {
value.abs()
}
/// The minimum function (min) picks the smaller of two numbers.
#[node_macro::node(category("Math: Numeric"))]
fn min<T: std::cmp::PartialOrd>(_: impl Ctx, #[implementations(f64, &f64, f32, &f32, u32, &u32, &str)] value: T, #[implementations(f64, &f64, f32, &f32, u32, &u32, &str)] other_value: T) -> T {
if value < other_value { value } else { other_value }
}
/// The maximum function (max) picks the larger of two numbers.
#[node_macro::node(category("Math: Numeric"))]
fn max<T: std::cmp::PartialOrd>(_: impl Ctx, #[implementations(f64, &f64, f32, &f32, u32, &u32, &str)] value: T, #[implementations(f64, &f64, f32, &f32, u32, &u32, &str)] other_value: T) -> T {
if value > other_value { value } else { other_value }
}
/// The clamp function (clamp) restricts a number to a specified range between a minimum and maximum value. The minimum and maximum values are automatically swapped if they are reversed.
#[node_macro::node(category("Math: Numeric"))]
fn clamp<T: std::cmp::PartialOrd>(
_: impl Ctx,
#[implementations(f64, &f64, f32, &f32, u32, &u32, &str)] value: T,
#[implementations(f64, &f64, f32, &f32, u32, &u32, &str)] min: T,
#[implementations(f64, &f64, f32, &f32, u32, &u32, &str)] max: T,
) -> T {
let (min, max) = if min < max { (min, max) } else { (max, min) };
if value < min {
min
} else if value > max {
max
} else {
value
}
}
/// The equality operation (==) compares two values and returns true if they are equal, or false if they are not.
#[node_macro::node(category("Math: Logic"))]
fn equals<U: std::cmp::PartialEq<T>, T>(
_: impl Ctx,
#[implementations(f64, &f64, f32, &f32, u32, &u32, DVec2, &DVec2, &str)] value: T,
#[implementations(f64, &f64, f32, &f32, u32, &u32, DVec2, &DVec2, &str)] other_value: U,
) -> bool {
other_value == value
}
/// The inequality operation (!=) compares two values and returns true if they are not equal, or false if they are.
#[node_macro::node(category("Math: Logic"))]
fn not_equals<U: std::cmp::PartialEq<T>, T>(
_: impl Ctx,
#[implementations(f64, &f64, f32, &f32, u32, &u32, DVec2, &DVec2, &str)] value: T,
#[implementations(f64, &f64, f32, &f32, u32, &u32, DVec2, &DVec2, &str)] other_value: U,
) -> bool {
other_value != value
}
/// The less-than operation (<) compares two values and returns true if the first value is less than the second, or false if it is not.
/// If enabled with "Or Equal", the less-than-or-equal operation (<=) will be used instead.
#[node_macro::node(category("Math: Logic"))]
fn less_than<T: std::cmp::PartialOrd<T>>(
_: impl Ctx,
#[implementations(f64, &f64, f32, &f32, u32, &u32)] value: T,
#[implementations(f64, &f64, f32, &f32, u32, &u32)] other_value: T,
or_equal: bool,
) -> bool {
if or_equal { value <= other_value } else { value < other_value }
}
/// The greater-than operation (>) compares two values and returns true if the first value is greater than the second, or false if it is not.
/// If enabled with "Or Equal", the greater-than-or-equal operation (>=) will be used instead.
#[node_macro::node(category("Math: Logic"))]
fn greater_than<T: std::cmp::PartialOrd<T>>(
_: impl Ctx,
#[implementations(f64, &f64, f32, &f32, u32, &u32)] value: T,
#[implementations(f64, &f64, f32, &f32, u32, &u32)] other_value: T,
or_equal: bool,
) -> bool {
if or_equal { value >= other_value } else { value > other_value }
}
/// The logical or operation (||) returns true if either of the two inputs are true, or false if both are false.
#[node_macro::node(category("Math: Logic"))]
fn logical_or(_: impl Ctx, value: bool, other_value: bool) -> bool {
value || other_value
}
/// The logical and operation (&&) returns true if both of the two inputs are true, or false if any are false.
#[node_macro::node(category("Math: Logic"))]
fn logical_and(_: impl Ctx, value: bool, other_value: bool) -> bool {
value && other_value
}
/// The logical not operation (!) reverses true and false value of the input.
#[node_macro::node(category("Math: Logic"))]
fn logical_not(_: impl Ctx, input: bool) -> bool {
!input
}
/// Constructs a bool value which may be set to true or false.
#[node_macro::node(category("Value"))]
fn bool_value(_: impl Ctx, _primary: (), #[name("Bool")] bool_value: bool) -> bool {
bool_value
}
/// Constructs a number value which may be set to any real number.
#[node_macro::node(category("Value"))]
fn number_value(_: impl Ctx, _primary: (), number: f64) -> f64 {
number
}
/// Constructs a number value which may be set to any value from 0% to 100% by dragging the slider.
#[node_macro::node(category("Value"))]
fn percentage_value(_: impl Ctx, _primary: (), percentage: Percentage) -> f64 {
percentage
}
/// Constructs a two-dimensional vector value which may be set to any XY coordinate.
#[node_macro::node(category("Value"))]
fn coordinate_value(_: impl Ctx, _primary: (), x: f64, y: f64) -> DVec2 {
DVec2::new(x, y)
}
/// Constructs a color value which may be set to any color, or no color.
#[node_macro::node(category("Value"))]
fn color_value(_: impl Ctx, _primary: (), #[default(Color::BLACK)] color: Option<Color>) -> Option<Color> {
color
}
/// Gets the color at the specified position along the gradient, given a position from 0 (left) to 1 (right).
#[node_macro::node(category("Color"))]
fn sample_gradient(_: impl Ctx, _primary: (), gradient: GradientStops, position: Fraction) -> Color {
let position = position.clamp(0., 1.);
gradient.evaluate(position)
}
/// Constructs a gradient value which may be set to any sequence of color stops to represent the transition between colors.
#[node_macro::node(category("Value"))]
fn gradient_value(_: impl Ctx, _primary: (), gradient: GradientStops) -> GradientStops {
gradient
}
/// Constructs a string value which may be set to any plain text.
#[node_macro::node(category("Value"))]
fn string_value(_: impl Ctx, _primary: (), string: String) -> String {
string
}
/// Meant for debugging purposes, not general use. Returns the size of the input type in bytes.
#[node_macro::node(category("Debug"))]
fn size_of(_: impl Ctx, ty: crate::Type) -> Option<usize> {
ty.size()
}
/// Meant for debugging purposes, not general use. Wraps the input value in the Some variant of an Option.
#[node_macro::node(category("Debug"))]
fn some<T>(_: impl Ctx, #[implementations(f64, f32, u32, u64, String, Color)] input: T) -> Option<T> {
Some(input)
}
/// Meant for debugging purposes, not general use. Unwraps the input value from an Option, returning the default value if the input is None.
#[node_macro::node(category("Debug"))]
fn unwrap<T: Default>(_: impl Ctx, #[implementations(Option<f64>, Option<f32>, Option<u32>, Option<u64>, Option<String>, Option<Color>)] input: Option<T>) -> T {
input.unwrap_or_default()
}
/// Meant for debugging purposes, not general use. Clones the input value.
#[node_macro::node(category("Debug"))]
fn clone<'i, T: Clone + 'i>(_: impl Ctx, #[implementations(&RasterDataTable<CPU>)] value: &'i T) -> T {
value.clone()
}
#[node_macro::node(category("Math: Vector"))]
fn dot_product(_: impl Ctx, vector_a: DVec2, vector_b: DVec2) -> f64 {
vector_a.dot(vector_b)
}
/// Obtain the X or Y component of a coordinate.
#[node_macro::node(name("Extract XY"), category("Math: Vector"))]
fn extract_xy<T: Into<DVec2>>(_: impl Ctx, #[implementations(DVec2, IVec2, UVec2)] vector: T, axis: XY) -> f64 {
match axis {
XY::X => vector.into().x,
XY::Y => vector.into().y,
}
}
/// The X or Y component of a coordinate.
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq, Hash, DynAny, node_macro::ChoiceType, specta::Type, serde::Serialize, serde::Deserialize)]
#[widget(Dropdown)]
pub enum XY {
#[default]
X,
Y,
}
// TODO: Rename to "Passthrough"
/// Passes-through the input value without changing it. This is useful for rerouting wires for organization purposes.
@ -644,72 +138,9 @@ impl<'input, I: 'input + Convert<_O> + Sync + Send, _O: 'input> Node<'input, I>
#[cfg(test)]
mod test {
use super::*;
use crate::generic::*;
#[test]
pub fn dot_product_function() {
let vector_a = DVec2::new(1., 2.);
let vector_b = DVec2::new(3., 4.);
assert_eq!(dot_product((), vector_a, vector_b), 11.);
}
#[test]
fn test_basic_expression() {
let result = math((), 0., "2 + 2".to_string(), 0.);
assert_eq!(result, 4.);
}
#[test]
fn test_complex_expression() {
let result = math((), 0., "(5 * 3) + (10 / 2)".to_string(), 0.);
assert_eq!(result, 20.);
}
#[test]
fn test_default_expression() {
let result = math((), 0., "0".to_string(), 0.);
assert_eq!(result, 0.);
}
#[test]
fn test_invalid_expression() {
let result = math((), 0., "invalid".to_string(), 0.);
assert_eq!(result, 0.);
}
#[test]
pub fn identity_node() {
assert_eq!(identity(&4), &4);
}
#[test]
pub fn foo() {
let fnn = FnNode::new(|(a, b)| (b, a));
assert_eq!(fnn.eval((1u32, 2u32)), (2, 1));
}
#[test]
pub fn add_vectors() {
assert_eq!(super::add((), DVec2::ONE, DVec2::ONE), DVec2::ONE * 2.);
}
#[test]
pub fn subtract_f64() {
assert_eq!(super::subtract((), 5_f64, 3_f64), 2.);
}
#[test]
pub fn divide_vectors() {
assert_eq!(super::divide((), DVec2::ONE, 2_f64), DVec2::ONE / 2.);
}
#[test]
pub fn modulo_positive() {
assert_eq!(super::modulo((), -5_f64, 2_f64, true), 1_f64);
}
#[test]
pub fn modulo_negative() {
assert_eq!(super::modulo((), -5_f64, 2_f64, false), -1_f64);
}
}

View file

@ -99,7 +99,7 @@ async fn instance_index(ctx: impl Ctx + ExtractIndex) -> f64 {
mod test {
use super::*;
use crate::Node;
use crate::ops::ExtractXyNode;
use crate::extract_xy::{ExtractXyNode, XY};
use crate::vector::VectorData;
use bezier_rs::Subpath;
use glam::DVec2;
@ -121,7 +121,7 @@ mod test {
let owned = OwnedContextImpl::default().into_context();
let rect = crate::vector::generator_nodes::RectangleNode::new(
FutureWrapperNode(()),
ExtractXyNode::new(InstancePositionNode {}, FutureWrapperNode(crate::ops::XY::Y)),
ExtractXyNode::new(InstancePositionNode {}, FutureWrapperNode(XY::Y)),
FutureWrapperNode(2_f64),
FutureWrapperNode(false),
FutureWrapperNode(0_f64),

View file

@ -0,0 +1,17 @@
[package]
name = "graphene-math-nodes"
version = "0.1.0"
edition = "2024"
description = "graphene math nodes"
authors = ["Graphite Authors <contact@graphite.rs>"]
license = "MIT OR Apache-2.0"
[dependencies]
graphene-core = { workspace = true }
node-macro = { workspace = true }
# Workspace dependencies
glam = { workspace = true }
rand = { workspace = true }
math-parser = { workspace = true }
log = { workspace = true }

View file

@ -0,0 +1,532 @@
use glam::DVec2;
use graphene_core::gradient::GradientStops;
use graphene_core::registry::types::{Fraction, Percentage};
use graphene_core::{Color, Ctx, num_traits};
use log::warn;
use math_parser::ast;
use math_parser::context::{EvalContext, NothingMap, ValueProvider};
use math_parser::value::{Number, Value};
use num_traits::Pow;
use rand::{Rng, SeedableRng};
use std::ops::{Add, Div, Mul, Rem, Sub};
/// The struct that stores the context for the maths parser.
/// This is currently just limited to supplying `a` and `b` until we add better node graph support and UI for variadic inputs.
struct MathNodeContext {
a: f64,
b: f64,
}
impl ValueProvider for MathNodeContext {
fn get_value(&self, name: &str) -> Option<Value> {
if name.eq_ignore_ascii_case("a") {
Some(Value::from_f64(self.a))
} else if name.eq_ignore_ascii_case("b") {
Some(Value::from_f64(self.b))
} else {
None
}
}
}
/// Calculates a mathematical expression with input values "A" and "B"
#[node_macro::node(category("Math: Arithmetic"), properties("math_properties"))]
fn math<U: num_traits::float::Float>(
_: impl Ctx,
/// The value of "A" when calculating the expression
#[implementations(f64, f32)]
operand_a: U,
/// A math expression that may incorporate "A" and/or "B", such as "sqrt(A + B) - B^2"
#[default(A + B)]
expression: String,
/// The value of "B" when calculating the expression
#[implementations(f64, f32)]
#[default(1.)]
operand_b: U,
) -> U {
let (node, _unit) = match ast::Node::try_parse_from_str(&expression) {
Ok(expr) => expr,
Err(e) => {
warn!("Invalid expression: `{expression}`\n{e:?}");
return U::from(0.).unwrap();
}
};
let context = EvalContext::new(
MathNodeContext {
a: operand_a.to_f64().unwrap(),
b: operand_b.to_f64().unwrap(),
},
NothingMap,
);
let value = match node.eval(&context) {
Ok(value) => value,
Err(e) => {
warn!("Expression evaluation error: {e:?}");
return U::from(0.).unwrap();
}
};
let Value::Number(num) = value;
match num {
Number::Real(val) => U::from(val).unwrap(),
Number::Complex(c) => U::from(c.re).unwrap(),
}
}
/// The addition operation (+) calculates the sum of two numbers.
#[node_macro::node(category("Math: Arithmetic"))]
fn add<U: Add<T>, T>(
_: impl Ctx,
#[implementations(f64, &f64, f64, &f64, f32, &f32, f32, &f32, u32, &u32, u32, &u32, DVec2, f64, DVec2)] augend: U,
#[implementations(f64, f64, &f64, &f64, f32, f32, &f32, &f32, u32, u32, &u32, &u32, DVec2, DVec2, f64)] addend: T,
) -> <U as Add<T>>::Output {
augend + addend
}
/// The subtraction operation (-) calculates the difference between two numbers.
#[node_macro::node(category("Math: Arithmetic"))]
fn subtract<U: Sub<T>, T>(
_: impl Ctx,
#[implementations(f64, &f64, f64, &f64, f32, &f32, f32, &f32, u32, &u32, u32, &u32, DVec2, f64, DVec2)] minuend: U,
#[implementations(f64, f64, &f64, &f64, f32, f32, &f32, &f32, u32, u32, &u32, &u32, DVec2, DVec2, f64)] subtrahend: T,
) -> <U as Sub<T>>::Output {
minuend - subtrahend
}
/// The multiplication operation (×) calculates the product of two numbers.
#[node_macro::node(category("Math: Arithmetic"))]
fn multiply<U: Mul<T>, T>(
_: impl Ctx,
#[implementations(f64, &f64, f64, &f64, f32, &f32, f32, &f32, u32, &u32, u32, &u32, DVec2, f64, DVec2)] multiplier: U,
#[default(1.)]
#[implementations(f64, f64, &f64, &f64, f32, f32, &f32, &f32, u32, u32, &u32, &u32, DVec2, DVec2, f64)]
multiplicand: T,
) -> <U as Mul<T>>::Output {
multiplier * multiplicand
}
/// The division operation (÷) calculates the quotient of two numbers.
///
/// Produces 0 if the denominator is 0.
#[node_macro::node(category("Math: Arithmetic"))]
fn divide<U: Div<T> + Default + PartialEq, T: Default + PartialEq>(
_: impl Ctx,
#[implementations(f64, f64, f32, f32, u32, u32, DVec2, DVec2, f64)] numerator: U,
#[default(1.)]
#[implementations(f64, f64, f32, f32, u32, u32, DVec2, f64, DVec2)]
denominator: T,
) -> <U as Div<T>>::Output
where
<U as Div<T>>::Output: Default,
{
if denominator == T::default() {
return <U as Div<T>>::Output::default();
}
numerator / denominator
}
/// The modulo operation (%) calculates the remainder from the division of two numbers. The sign of the result shares the sign of the numerator unless "Always Positive" is enabled.
#[node_macro::node(category("Math: Arithmetic"))]
fn modulo<U: Rem<T, Output: Add<T, Output: Rem<T, Output = U::Output>>>, T: Copy>(
_: impl Ctx,
#[implementations(f64, &f64, f64, &f64, f32, &f32, f32, &f32, u32, &u32, u32, &u32, DVec2, DVec2, f64)] numerator: U,
#[default(2.)]
#[implementations(f64, f64, &f64, &f64, f32, f32, &f32, &f32, u32, u32, &u32, &u32, DVec2, f64, DVec2)]
modulus: T,
always_positive: bool,
) -> <U as Rem<T>>::Output {
if always_positive { (numerator % modulus + modulus) % modulus } else { numerator % modulus }
}
/// The exponent operation (^) calculates the result of raising a number to a power.
#[node_macro::node(category("Math: Arithmetic"))]
fn exponent<U: Pow<T>, T>(
_: impl Ctx,
#[implementations(f64, &f64, f64, &f64, f32, &f32, f32, &f32, u32, &u32, u32, &u32)] base: U,
#[default(2.)]
#[implementations(f64, f64, &f64, &f64, f32, f32, &f32, &f32, u32, u32, &u32, &u32)]
power: T,
) -> <U as num_traits::Pow<T>>::Output {
base.pow(power)
}
/// The square root operation (√) calculates the nth root of a number, equivalent to raising the number to the power of 1/n.
#[node_macro::node(category("Math: Arithmetic"))]
fn root<U: num_traits::float::Float>(
_: impl Ctx,
#[default(2.)]
#[implementations(f64, f32)]
radicand: U,
#[default(2.)]
#[implementations(f64, f32)]
degree: U,
) -> U {
if degree == U::from(2.).unwrap() {
radicand.sqrt()
} else if degree == U::from(3.).unwrap() {
radicand.cbrt()
} else {
radicand.powf(U::from(1.).unwrap() / degree)
}
}
/// The logarithmic function (log) calculates the logarithm of a number with a specified base. If the natural logarithm function (ln) is desired, set the base to "e".
#[node_macro::node(category("Math: Arithmetic"))]
fn logarithm<U: num_traits::float::Float>(
_: impl Ctx,
#[implementations(f64, f32)] value: U,
#[default(2.)]
#[implementations(f64, f32)]
base: U,
) -> U {
if base == U::from(2.).unwrap() {
value.log2()
} else if base == U::from(10.).unwrap() {
value.log10()
} else if base - U::from(std::f64::consts::E).unwrap() < U::epsilon() * U::from(1e6).unwrap() {
value.ln()
} else {
value.log(base)
}
}
/// The sine trigonometric function (sin) calculates the ratio of the angle's opposite side length to its hypotenuse length.
#[node_macro::node(category("Math: Trig"))]
fn sine<U: num_traits::float::Float>(_: impl Ctx, #[implementations(f64, f32)] theta: U, radians: bool) -> U {
if radians { theta.sin() } else { theta.to_radians().sin() }
}
/// The cosine trigonometric function (cos) calculates the ratio of the angle's adjacent side length to its hypotenuse length.
#[node_macro::node(category("Math: Trig"))]
fn cosine<U: num_traits::float::Float>(_: impl Ctx, #[implementations(f64, f32)] theta: U, radians: bool) -> U {
if radians { theta.cos() } else { theta.to_radians().cos() }
}
/// The tangent trigonometric function (tan) calculates the ratio of the angle's opposite side length to its adjacent side length.
#[node_macro::node(category("Math: Trig"))]
fn tangent<U: num_traits::float::Float>(_: impl Ctx, #[implementations(f64, f32)] theta: U, radians: bool) -> U {
if radians { theta.tan() } else { theta.to_radians().tan() }
}
/// The inverse sine trigonometric function (asin) calculates the angle whose sine is the specified value.
#[node_macro::node(category("Math: Trig"))]
fn sine_inverse<U: num_traits::float::Float>(_: impl Ctx, #[implementations(f64, f32)] value: U, radians: bool) -> U {
if radians { value.asin() } else { value.asin().to_degrees() }
}
/// The inverse cosine trigonometric function (acos) calculates the angle whose cosine is the specified value.
#[node_macro::node(category("Math: Trig"))]
fn cosine_inverse<U: num_traits::float::Float>(_: impl Ctx, #[implementations(f64, f32)] value: U, radians: bool) -> U {
if radians { value.acos() } else { value.acos().to_degrees() }
}
/// The inverse tangent trigonometric function (atan or atan2, depending on input type) calculates:
/// atan: the angle whose tangent is the specified scalar number.
/// atan2: the angle of a ray from the origin to the specified coordinate.
#[node_macro::node(category("Math: Trig"))]
fn tangent_inverse<U: TangentInverse>(_: impl Ctx, #[implementations(f64, f32, DVec2)] value: U, radians: bool) -> U::Output {
value.atan(radians)
}
pub trait TangentInverse {
type Output: num_traits::float::Float;
fn atan(self, radians: bool) -> Self::Output;
}
impl TangentInverse for f32 {
type Output = f32;
fn atan(self, radians: bool) -> Self::Output {
if radians { self.atan() } else { self.atan().to_degrees() }
}
}
impl TangentInverse for f64 {
type Output = f64;
fn atan(self, radians: bool) -> Self::Output {
if radians { self.atan() } else { self.atan().to_degrees() }
}
}
impl TangentInverse for DVec2 {
type Output = f64;
fn atan(self, radians: bool) -> Self::Output {
if radians { self.y.atan2(self.x) } else { self.y.atan2(self.x).to_degrees() }
}
}
/// The random function (rand) converts a seed into a random number within the specified range, inclusive of the minimum and exclusive of the maximum. The minimum and maximum values are automatically swapped if they are reversed.
#[node_macro::node(category("Math: Numeric"))]
fn random<U: num_traits::float::Float>(
_: impl Ctx,
_primary: (),
seed: u64,
#[implementations(f64, f32)]
#[default(0.)]
min: U,
#[implementations(f64, f32)]
#[default(1.)]
max: U,
) -> f64 {
let mut rng = rand::rngs::StdRng::seed_from_u64(seed);
let result = rng.random::<f64>();
let (min, max) = if min < max { (min, max) } else { (max, min) };
let (min, max) = (min.to_f64().unwrap(), max.to_f64().unwrap());
result * (max - min) + min
}
/// Convert a number to an integer of the type u32, which may be the required type for certain node inputs. This will be removed in the future when automatic type conversion is implemented.
#[node_macro::node(name("To u32"), category("Math: Numeric"))]
fn to_u32<U: num_traits::float::Float>(_: impl Ctx, #[implementations(f64, f32)] value: U) -> u32 {
let value = U::clamp(value, U::from(0.).unwrap(), U::from(u32::MAX as f64).unwrap());
value.to_u32().unwrap()
}
/// Convert a number to an integer of the type u64, which may be the required type for certain node inputs. This will be removed in the future when automatic type conversion is implemented.
#[node_macro::node(name("To u64"), category("Math: Numeric"))]
fn to_u64<U: num_traits::float::Float>(_: impl Ctx, #[implementations(f64, f32)] value: U) -> u64 {
let value = U::clamp(value, U::from(0.).unwrap(), U::from(u64::MAX as f64).unwrap());
value.to_u64().unwrap()
}
/// Convert an integer to a decimal number of the type f64, which may be the required type for certain node inputs. This will be removed in the future when automatic type conversion is implemented.
#[node_macro::node(name("To f64"), category("Math: Numeric"))]
fn to_f64<U: num_traits::int::PrimInt>(_: impl Ctx, #[implementations(u32, u64)] value: U) -> f64 {
value.to_f64().unwrap()
}
/// The rounding function (round) maps an input value to its nearest whole number. Halfway values are rounded away from zero.
#[node_macro::node(category("Math: Numeric"))]
fn round<U: num_traits::float::Float>(_: impl Ctx, #[implementations(f64, f32)] value: U) -> U {
value.round()
}
/// The floor function (floor) reduces an input value to its nearest larger whole number, unless the input number is already whole.
#[node_macro::node(category("Math: Numeric"))]
fn floor<U: num_traits::float::Float>(_: impl Ctx, #[implementations(f64, f32)] value: U) -> U {
value.floor()
}
/// The ceiling function (ceil) increases an input value to its nearest smaller whole number, unless the input number is already whole.
#[node_macro::node(category("Math: Numeric"))]
fn ceiling<U: num_traits::float::Float>(_: impl Ctx, #[implementations(f64, f32)] value: U) -> U {
value.ceil()
}
/// The absolute value function (abs) removes the negative sign from an input value, if present.
#[node_macro::node(category("Math: Numeric"))]
fn absolute_value<U: num_traits::float::Float>(_: impl Ctx, #[implementations(f64, f32)] value: U) -> U {
value.abs()
}
/// The minimum function (min) picks the smaller of two numbers.
#[node_macro::node(category("Math: Numeric"))]
fn min<T: std::cmp::PartialOrd>(_: impl Ctx, #[implementations(f64, &f64, f32, &f32, u32, &u32, &str)] value: T, #[implementations(f64, &f64, f32, &f32, u32, &u32, &str)] other_value: T) -> T {
if value < other_value { value } else { other_value }
}
/// The maximum function (max) picks the larger of two numbers.
#[node_macro::node(category("Math: Numeric"))]
fn max<T: std::cmp::PartialOrd>(_: impl Ctx, #[implementations(f64, &f64, f32, &f32, u32, &u32, &str)] value: T, #[implementations(f64, &f64, f32, &f32, u32, &u32, &str)] other_value: T) -> T {
if value > other_value { value } else { other_value }
}
/// The clamp function (clamp) restricts a number to a specified range between a minimum and maximum value. The minimum and maximum values are automatically swapped if they are reversed.
#[node_macro::node(category("Math: Numeric"))]
fn clamp<T: std::cmp::PartialOrd>(
_: impl Ctx,
#[implementations(f64, &f64, f32, &f32, u32, &u32, &str)] value: T,
#[implementations(f64, &f64, f32, &f32, u32, &u32, &str)] min: T,
#[implementations(f64, &f64, f32, &f32, u32, &u32, &str)] max: T,
) -> T {
let (min, max) = if min < max { (min, max) } else { (max, min) };
if value < min {
min
} else if value > max {
max
} else {
value
}
}
/// The equality operation (==) compares two values and returns true if they are equal, or false if they are not.
#[node_macro::node(category("Math: Logic"))]
fn equals<U: std::cmp::PartialEq<T>, T>(
_: impl Ctx,
#[implementations(f64, &f64, f32, &f32, u32, &u32, DVec2, &DVec2, &str)] value: T,
#[implementations(f64, &f64, f32, &f32, u32, &u32, DVec2, &DVec2, &str)] other_value: U,
) -> bool {
other_value == value
}
/// The inequality operation (!=) compares two values and returns true if they are not equal, or false if they are.
#[node_macro::node(category("Math: Logic"))]
fn not_equals<U: std::cmp::PartialEq<T>, T>(
_: impl Ctx,
#[implementations(f64, &f64, f32, &f32, u32, &u32, DVec2, &DVec2, &str)] value: T,
#[implementations(f64, &f64, f32, &f32, u32, &u32, DVec2, &DVec2, &str)] other_value: U,
) -> bool {
other_value != value
}
/// The less-than operation (<) compares two values and returns true if the first value is less than the second, or false if it is not.
/// If enabled with "Or Equal", the less-than-or-equal operation (<=) will be used instead.
#[node_macro::node(category("Math: Logic"))]
fn less_than<T: std::cmp::PartialOrd<T>>(
_: impl Ctx,
#[implementations(f64, &f64, f32, &f32, u32, &u32)] value: T,
#[implementations(f64, &f64, f32, &f32, u32, &u32)] other_value: T,
or_equal: bool,
) -> bool {
if or_equal { value <= other_value } else { value < other_value }
}
/// The greater-than operation (>) compares two values and returns true if the first value is greater than the second, or false if it is not.
/// If enabled with "Or Equal", the greater-than-or-equal operation (>=) will be used instead.
#[node_macro::node(category("Math: Logic"))]
fn greater_than<T: std::cmp::PartialOrd<T>>(
_: impl Ctx,
#[implementations(f64, &f64, f32, &f32, u32, &u32)] value: T,
#[implementations(f64, &f64, f32, &f32, u32, &u32)] other_value: T,
or_equal: bool,
) -> bool {
if or_equal { value >= other_value } else { value > other_value }
}
/// The logical or operation (||) returns true if either of the two inputs are true, or false if both are false.
#[node_macro::node(category("Math: Logic"))]
fn logical_or(_: impl Ctx, value: bool, other_value: bool) -> bool {
value || other_value
}
/// The logical and operation (&&) returns true if both of the two inputs are true, or false if any are false.
#[node_macro::node(category("Math: Logic"))]
fn logical_and(_: impl Ctx, value: bool, other_value: bool) -> bool {
value && other_value
}
/// The logical not operation (!) reverses true and false value of the input.
#[node_macro::node(category("Math: Logic"))]
fn logical_not(_: impl Ctx, input: bool) -> bool {
!input
}
/// Constructs a bool value which may be set to true or false.
#[node_macro::node(category("Value"))]
fn bool_value(_: impl Ctx, _primary: (), #[name("Bool")] bool_value: bool) -> bool {
bool_value
}
/// Constructs a number value which may be set to any real number.
#[node_macro::node(category("Value"))]
fn number_value(_: impl Ctx, _primary: (), number: f64) -> f64 {
number
}
/// Constructs a number value which may be set to any value from 0% to 100% by dragging the slider.
#[node_macro::node(category("Value"))]
fn percentage_value(_: impl Ctx, _primary: (), percentage: Percentage) -> f64 {
percentage
}
/// Constructs a two-dimensional vector value which may be set to any XY coordinate.
#[node_macro::node(category("Value"))]
fn coordinate_value(_: impl Ctx, _primary: (), x: f64, y: f64) -> DVec2 {
DVec2::new(x, y)
}
/// Constructs a color value which may be set to any color, or no color.
#[node_macro::node(category("Value"))]
fn color_value(_: impl Ctx, _primary: (), #[default(Color::BLACK)] color: Option<Color>) -> Option<Color> {
color
}
/// Gets the color at the specified position along the gradient, given a position from 0 (left) to 1 (right).
#[node_macro::node(category("Color"))]
fn sample_gradient(_: impl Ctx, _primary: (), gradient: GradientStops, position: Fraction) -> Color {
let position = position.clamp(0., 1.);
gradient.evaluate(position)
}
/// Constructs a gradient value which may be set to any sequence of color stops to represent the transition between colors.
#[node_macro::node(category("Value"))]
fn gradient_value(_: impl Ctx, _primary: (), gradient: GradientStops) -> GradientStops {
gradient
}
/// Constructs a string value which may be set to any plain text.
#[node_macro::node(category("Value"))]
fn string_value(_: impl Ctx, _primary: (), string: String) -> String {
string
}
#[node_macro::node(category("Math: Vector"))]
fn dot_product(_: impl Ctx, vector_a: DVec2, vector_b: DVec2) -> f64 {
vector_a.dot(vector_b)
}
#[cfg(test)]
mod test {
use super::*;
use graphene_core::Node;
use graphene_core::generic::FnNode;
#[test]
pub fn dot_product_function() {
let vector_a = DVec2::new(1., 2.);
let vector_b = DVec2::new(3., 4.);
assert_eq!(dot_product((), vector_a, vector_b), 11.);
}
#[test]
fn test_basic_expression() {
let result = math((), 0., "2 + 2".to_string(), 0.);
assert_eq!(result, 4.);
}
#[test]
fn test_complex_expression() {
let result = math((), 0., "(5 * 3) + (10 / 2)".to_string(), 0.);
assert_eq!(result, 20.);
}
#[test]
fn test_default_expression() {
let result = math((), 0., "0".to_string(), 0.);
assert_eq!(result, 0.);
}
#[test]
fn test_invalid_expression() {
let result = math((), 0., "invalid".to_string(), 0.);
assert_eq!(result, 0.);
}
#[test]
pub fn foo() {
let fnn = FnNode::new(|(a, b)| (b, a));
assert_eq!(fnn.eval((1u32, 2u32)), (2, 1));
}
#[test]
pub fn add_vectors() {
assert_eq!(super::add((), DVec2::ONE, DVec2::ONE), DVec2::ONE * 2.);
}
#[test]
pub fn subtract_f64() {
assert_eq!(super::subtract((), 5_f64, 3_f64), 2.);
}
#[test]
pub fn divide_vectors() {
assert_eq!(super::divide((), DVec2::ONE, 2_f64), DVec2::ONE / 2.);
}
#[test]
pub fn modulo_positive() {
assert_eq!(super::modulo((), -5_f64, 2_f64, true), 1_f64);
}
#[test]
pub fn modulo_negative() {
assert_eq!(super::modulo((), -5_f64, 2_f64, false), -1_f64);
}
}

View file

@ -221,7 +221,7 @@ tagged_value! {
// ==========
BlendMode(BlendMode),
LuminanceCalculation(LuminanceCalculation),
XY(graphene_core::ops::XY),
XY(graphene_core::extract_xy::XY),
RedGreenBlue(graphene_core::raster::RedGreenBlue),
RedGreenBlueAlpha(graphene_core::raster::RedGreenBlueAlpha),
RealTimeMode(graphene_core::animation::RealTimeMode),

View file

@ -29,6 +29,7 @@ graph-craft = { workspace = true }
wgpu-executor = { workspace = true }
graphene-core = { workspace = true }
graphene-path-bool = { workspace = true }
graphene-math-nodes = { workspace = true }
graphene-svg-renderer = { workspace = true }
graphene-application-io = { workspace = true }

View file

@ -12,6 +12,7 @@ pub mod wasm_application_io;
pub use graphene_application_io as application_io;
pub use graphene_core::vector;
pub use graphene_core::*;
pub use graphene_math_nodes as math_nodes;
pub use graphene_path_bool as path_bool;
/// stop gap solution until all `Quad` and `Rect` paths have been replaced with their absolute ones