Based on how this API is currently implemented, this doesn't
really cost us anything. But it gives us access to more
information about where the symbol is defined.
I think this is a better home for it. This way, `ty_ide`
more clearly owns how the "kind" of a completion is computed.
In particular, it is computed differently for things where
we know its type versus unimported symbols.
In the course of writing the "add an import" implementation,
I realized that we needed to know which symbols were in scope
and how they were defined. This was necessary to be able to
determine how to add a new import in a way that (minimally)
does not conflict with existing symbols.
I'm not sure that this is fully correct (especially for
symbol bindings) and it's unclear to me in which cases a
definition site will be missing. But this seems to work for
some of the basic cases that I tried.
The names of the submodules returned should be *complete*. This
is the contract of `Module::name`. However, we were previously
only returning the basename of the submodule.
This can already be accomplished via a `From` impl (and indeed,
that's how this is implemented). But in a generic context, the
turbo-fishing that needs to be applied is quite annoying.
Basically, given a `from module import name1, name2, ...` statement,
we'd like to be able to insert another name in that list.
This new `Insertion::existing_import` API provides such
functionality. There isn't much to it, although we are careful
to try and avoid inserting nonsense for import statements
that are already invalid.
This refactors the importer abstraction to use a shared
`Insertion`. This is mostly just moving some code around
with some slight tweaks.
The plan here is to keep the rest of the importing code
in `ruff_linter` and then write something ty-specific on
top of `Insertion`. This ends up sharing some code, but
not as much as would be ideal. In particular, the
`ruff_linter` imported is pretty tightly coupled with
ruff's semantic model. So to share the code, we'd need to
abstract over that.
## Summary
This PR wires up the GitHub output format moved to `ruff_db` in #20320
to the ty CLI.
It's a bit smaller than the GitLab version (#20155) because some of the
helpers were already in place, but I did factor out a few
`DisplayDiagnosticConfig` constructor calls in Ruff. I also exposed the
`GithubRenderer` and a wrapper `DisplayGithubDiagnostics` type because
we needed a way to configure the program name displayed in the GitHub
diagnostics. This was previously hard-coded to `Ruff`:
<img width="675" height="247" alt="image"
src="https://github.com/user-attachments/assets/592da860-d2f5-4abd-bc5a-66071d742509"
/>
Another option would be to drop the program name in the output format,
but I think it can be helpful in workflows with multiple programs
emitting annotations (such as Ruff and ty!)
## Test Plan
New CLI test, and a manual test with `--config 'terminal.output-format =
"github"'`
## Summary
Catch infinite recursion in binary-compare inference.
Fixes the stack overflow in `graphql-core` in mypy-primer.
## Test Plan
Added two tests that stack-overflowed before this PR.
## Summary
Use `Type::Divergent` to short-circuit diverging types in type
expressions. This avoids panicking in a wide variety of cases of
recursive type expressions.
Avoids many panics (but not yet all -- I'll be tracking down the rest)
from https://github.com/astral-sh/ty/issues/256 by falling back to
Divergent. For many of these recursive type aliases, we'd like to
support them properly (i.e. really understand the recursive nature of
the type, not just fall back to Divergent) but that will be future work.
This switches `Type::has_divergent_type` from using `any_over_type` to a
custom set of visit methods, because `any_over_type` visits more than we
need to visit, and exercises some lazy attributes of type, causing
significantly more work. This change means this diff doesn't regress
perf; it even reclaims some of the perf regression from
https://github.com/astral-sh/ruff/pull/20333.
## Test Plan
Added mdtest for recursive type alias that panics on main.
Verified that we can now type-check `packaging` (and projects depending
on it) without panic; this will allow moving a number of mypy-primer
projects from `bad.txt` to `good.txt` in a subsequent PR.
<!--
Thank you for contributing to Ruff/ty! To help us out with reviewing,
please consider the following:
- Does this pull request include a summary of the change? (See below.)
- Does this pull request include a descriptive title? (Please prefix
with `[ty]` for ty pull
requests.)
- Does this pull request include references to any relevant issues?
-->
## Summary
This PR implements F406
https://docs.astral.sh/ruff/rules/undefined-local-with-nested-import-star-usage/
as a semantic syntax error
## Test Plan
I have written inline tests as directed in #17412
---------
Signed-off-by: 11happy <soni5happy@gmail.com>
- Convert panics to diagnostics with id `Panic`, severity `Fatal`, and
the error as the diagnostic message, annotated with a `Span` with empty
code block and no range.
- Updates the post-linting message diagnostic handling to track the
maximum severity seen, and then prints the "report a bug in ruff"
message only if the max severity was `Fatal`
This depends on the sorting changes since it creates diagnostics with no
range specified.
Previously, we used a very fine-grained representation for individual
constraints: each constraint was _either_ a range constraint, a
not-equivalent constraint, or an incomparable constraint. These three
pieces are enough to represent all of the "real" constraints we need to
create — range constraints and their negation.
However, it meant that we weren't picking up as many chances to simplify
constraint sets as we could. Our simplification logic depends on being
able to look at _pairs_ of constraints or clauses to see if they
simplify relative to each other. With our fine-grained representation,
we could easily encounter situations that we should have been able to
simplify, but that would require looking at three or more individual
constraints.
For instance, negating a range constraint would produce:
```
¬(Base ≤ T ≤ Super) = ((T ≤ Base) ∧ (T ≠ Base)) ∨ (T ≁ Base) ∨
((Super ≤ T) ∧ (T ≠ Super)) ∨ (T ≁ Super)
```
That is, `T` must be (strictly) less than `Base`, (strictly) greater
than `Super`, or incomparable to either.
If we tried to union those back together, we should get `always`, since
`x ∨ ¬x` should always be true, no matter what `x` is. But instead we
would get:
```
(Base ≤ T ≤ Super) ∨ ((T ≤ Base) ∧ (T ≠ Base)) ∨ (T ≁ Base) ∨ ((Super ≤ T) ∧ (T ≠
Super)) ∨ (T ≁ Super)
```
Nothing would simplify relative to each other, because we'd have to look
at all five union elements to see that together they do in fact combine
to `always`.
The fine-grained representation was nice, because it made it easier to
[work out the math](https://dcreager.net/theory/constraints/) for
intersections and unions of each kind of constraint. But being able to
simplify is more important, since the example above comes up immediately
in #20093 when trying to handle constrained typevars.
The fix in this PR is to go back to a more coarse-grained
representation, where each individual constraint consists of a positive
range (which might be `always` / `Never ≤ T ≤ object`), and zero or more
negative ranges. The intuition is to think of a constraint as a region
of the type space (representable as a range) with zero or more "holes"
removed from it.
With this representation, negating a range constraint produces:
```
¬(Base ≤ T ≤ Super) = (always ∧ ¬(Base ≤ T ≤ Super))
```
(That looks trivial, because it is! We just move the positive range to
the negative side.)
The math is not that much harder than before, because there are only
three combinations to consider (each for intersection and union) —
though the fact that there can be multiple holes in a constraint does
require some nested loops. But the mdtest suite gives me confidence that
this is not introducing any new issues, and it definitely removes a
troublesome TODO.
(As an aside, this change also means that we are back to having each
clause contain no more than one individual constraint for any typevar.
This turned out to be important, because part of our simplification
logic was also depending on that!)
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
## Summary
This mainly removes an internal inconsistency, where we didn't remove
the `Self` type variable when eagerly binding `Self` to an instance
type. It has no observable effect, apparently.
builds on top of https://github.com/astral-sh/ruff/pull/20328
## Test Plan
None
## Summary
Fixes https://github.com/astral-sh/ty/issues/1161
Include `NamedTupleFallback` members in `NamedTuple` instance
completions.
- Augment instance attribute completions when completing on NamedTuple
instances by merging members from
`_typeshed._type_checker_internals.NamedTupleFallback`
## Test Plan
Adds a minimal completion test `namedtuple_fallback_instance_methods`
---------
Co-authored-by: David Peter <mail@david-peter.de>
## Summary
This project was [recently removed from
mypy_primer](https://github.com/astral-sh/ruff/pull/20378), so we need
to remove it from `good.txt` in order for ecosystem-analyzer to work
correctly.
## Test Plan
Run mypy_primer and ecosystem-analyzer on this branch.