Gates all uses of `get-size2` behind the feature `get-size` in the crate
`ruff_python_ast`. Also requires that `ruff_text_size` is pulled in with
the feature `get-size` enabled if we enable the same-named feature for
`ruff_python_ast`.
## Summary
Setting `TY_MEMORY_REPORT=full` will generate and print a memory usage
report to the CLI after a `ty check` run:
```
=======SALSA STRUCTS=======
`Definition` metadata=7.24MB fields=17.38MB count=181062
`Expression` metadata=4.45MB fields=5.94MB count=92804
`member_lookup_with_policy_::interned_arguments` metadata=1.97MB fields=2.25MB count=35176
...
=======SALSA QUERIES=======
`File -> ty_python_semantic::semantic_index::SemanticIndex`
metadata=11.46MB fields=88.86MB count=1638
`Definition -> ty_python_semantic::types::infer::TypeInference`
metadata=24.52MB fields=86.68MB count=146018
`File -> ruff_db::parsed::ParsedModule`
metadata=0.12MB fields=69.06MB count=1642
...
=======SALSA SUMMARY=======
TOTAL MEMORY USAGE: 577.61MB
struct metadata = 29.00MB
struct fields = 35.68MB
memo metadata = 103.87MB
memo fields = 409.06MB
```
Eventually, we should integrate these numbers into CI in some form. The
one limitation currently is that heap allocations in salsa structs (e.g.
interned values) are not tracked, but memoized values should have full
coverage. We may also want a peak memory usage counter (that accounts
for non-salsa memory), but that is relatively simple to profile manually
(e.g. `time -v ty check`) and would require a compile-time option to
avoid runtime overhead.
## Summary
Garbage collect ASTs once we are done checking a given file. Queries
with a cross-file dependency on the AST will reparse the file on demand.
This reduces ty's peak memory usage by ~20-30%.
The primary change of this PR is adding a `node_index` field to every
AST node, that is assigned by the parser. `ParsedModule` can use this to
create a flat index of AST nodes any time the file is parsed (or
reparsed). This allows `AstNodeRef` to simply index into the current
instance of the `ParsedModule`, instead of storing a pointer directly.
The indices are somewhat hackily (using an atomic integer) assigned by
the `parsed_module` query instead of by the parser directly. Assigning
the indices in source-order in the (recursive) parser turns out to be
difficult, and collecting the nodes during semantic indexing is
impossible as `SemanticIndex` does not hold onto a specific
`ParsedModuleRef`, which the pointers in the flat AST are tied to. This
means that we have to do an extra AST traversal to assign and collect
the nodes into a flat index, but the small performance impact (~3% on
cold runs) seems worth it for the memory savings.
Part of https://github.com/astral-sh/ty/issues/214.
This PR implements template strings (t-strings) in the parser and
formatter for Ruff.
Minimal changes necessary to compile were made in other parts of the code (e.g. ty, the linter, etc.). These will be covered properly in follow-up PRs.
## Summary
part of: #15655
I tried generating the source order function using code generation. I
tried a simple approach, but it is not enough to generate all of them
this way.
There is one good thing, that most of the implementations are fine with
this. We only have a few that are not. So one benefit of this PR could
be it eliminates a lot of the code, hence changing the AST structure
will only leave a few places to be fixed.
The `source_order` field determines if a node requires a source order
implementation. If it’s empty it means source order does not visit
anything.
Initially I didn’t want to repeat the field names. But I found two
things:
- `ExprIf` statement unlike other statements does not have the fields
defined in source order. This and also some fields do not need to be
included in the visit. So we just need a way to determine order, and
determine presence.
- Relying on the fields sounds more complicated to me. Maybe another
solution is to add a new attribute `order` to each field? I'm open to
suggestions.
But anyway, except for the `ExprIf` we don't need to write the field
names in order. Just knowing what fields must be visited are enough.
Some nodes had a more complex visitor:
`ExprCompare` required zipping two fields.
`ExprBoolOp` required a match over the fields.
`FstringValue` required a match, I created a new walk_ function that
does the match. and used it in code generation. I don’t think this
provides real value. Because I mostly moved the code from one file to
another. I was tried it as an option. I prefer to leave it in the code
as before.
Some visitors visit a slice of items. Others visit a single element. I
put a check on this in code generation to see if the field requires a
for loop or not. I think better approach is to have a consistent style.
So we can by default loop over any field that is a sequence.
For field types `StringLiteralValue` and `BytesLiteralValue` the types
are not a sequence in toml definition. But they implement `iter` so they
are iterated over. So the code generation does not properly identify
this. So in the code I'm checking for their types.
## Test Plan
All the tests should pass without any changes.
I checked the generated code to make sure it's the same as old code. I'm
not sure if there's a test for the source order visitor.
## Summary
Resolves#17289.
After this change, Red Knot will no longer show types on hover for
`None`, `...`, `True`, `False`, numbers, strings (but not f-strings),
and bytes literals.
## Test Plan
Unit tests.
<!--
Thank you for contributing to Ruff! To help us out with reviewing,
please consider the following:
- Does this pull request include a summary of the change? (See below.)
- Does this pull request include a descriptive title?
- Does this pull request include references to any relevant issues?
-->
## Summary
I decided to disable the new
[`needless_continue`](https://rust-lang.github.io/rust-clippy/master/index.html#needless_continue)
rule because I often found the explicit `continue` more readable over an
empty block or having to invert the condition of an other branch.
## Test Plan
`cargo test`
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
Summary
--
Detects irrefutable `match` cases before the final case using a modified
version
of the existing `Pattern::is_irrefutable` method from the AST crate. The
modified method helps to retrieve a more precise diagnostic range to
match what
Python 3.13 shows in the REPL.
Test Plan
--
New inline tests, as well as some updates to existing tests that had
irrefutable
patterns before the last block.
<!--
Thank you for contributing to Ruff! To help us out with reviewing,
please consider the following:
- Does this pull request include a summary of the change? (See below.)
- Does this pull request include a descriptive title?
- Does this pull request include references to any relevant issues?
-->
## Summary
<!-- What's the purpose of the change? What does it do, and why? -->
Part of #15655
Replaced statement nodes with autogenerated ones. Reused the stuff we
introduced in #16285. Nothing except for copying the nodes to new
format.
## Test Plan
Tests run without any changes. Also moved the test that checks size of
AST nodes to `generated.rs` since all of the structs that it tests are
now there.
<!-- How was it tested? -->
## Summary
Part of https://github.com/astral-sh/ruff/issues/15382
This PR implements a general callable type that wraps around a
`Signature` and it uses that new type to represent `typing.Callable`.
It also implements `Display` support for `Callable`. The format is as:
```
([<arg name>][: <arg type>][ = <default type>], ...) -> <return type>
```
The `/` and `*` separators are added at the correct boundary for
positional-only and keyword-only parameters. Now, as `typing.Callable`
only has positional-only parameters, the rendered signature would be:
```py
Callable[[int, str], None]
# (int, str, /) -> None
```
The `/` separator represents that all the arguments are positional-only.
The relationship methods that check assignability, subtype relationship,
etc. are not yet implemented and will be done so as a follow-up.
## Test Plan
Add test cases for display support for `Signature` and various mdtest
for `typing.Callable`.
## Summary
This PR makes the following changes:
- It adjusts various callsites to use the new
`ast::StringLiteral::contents_range()` method that was introduced in
https://github.com/astral-sh/ruff/pull/16183. This is less verbose and
more type-safe than using the `ast::str::raw_contents()` helper
function.
- It adds a new `ast::ExprStringLiteral::as_unconcatenated_literal()`
helper method, and adjusts various callsites to use it. This addresses
@MichaReiser's review comment at
https://github.com/astral-sh/ruff/pull/16183#discussion_r1957334365.
There is no functional change here, but it helps readability to make it
clearer that we're differentiating between implicitly concatenated
strings and unconcatenated strings at various points.
- It renames the `StringLiteralValue::flags()` method to
`StringLiteralFlags::first_literal_flags()`. If you're dealing with an
implicitly concatenated string `string_node`,
`string_node.value.flags().closer_len()` could give an incorrect result;
this renaming makes it clearer that the `StringLiteralFlags` instance
returned by the method is only guaranteed to give accurate information
for the first `StringLiteral` contained in the `ExprStringLiteral` node.
- It deletes the unused `BytesLiteralValue::flags()` method. This seems
prone to misuse in the same way as `StringLiteralValue::flags()`: if
it's an implicitly concatenated bytestring, the `BytesLiteralFlags`
instance returned by the method would only give accurate information for
the first `BytesLiteral` in the bytestring.
## Test Plan
`cargo test`
## Summary
This change begins to resolve#16071 by moving the `OperatorPrecedence`
structs from the `ruff_python_linter` crate into `ruff_python_ast`. This
PR also implements `precedence()` methods on the `Expr` and `ExprRef`
enums.
## Test Plan
Since this change mainly shifts existing logic, I didn't add any
additional tests. Existing tests do pass.
We now use ternary decision diagrams (TDDs) to represent visibility
constraints. A TDD is just like a BDD ([_binary_ decision
diagram](https://en.wikipedia.org/wiki/Binary_decision_diagram)), but
with "ambiguous" as an additional allowed value. Unlike the previous
representation, TDDs are strongly normalizing, so equivalent ternary
formulas are represented by exactly the same graph node, and can be
compared for equality in constant time.
We currently have a slight 1-3% performance regression with this in
place, according to local testing. However, we also have a _5× increase_
in performance for pathological cases, since we can now remove the
recursion limit when we evaluate visibility constraints.
As follow-on work, we are now closer to being able to remove the
`simplify_visibility_constraint` calls in the semantic index builder. In
the vast majority of cases, we now see (for instance) that the
visibility constraint after an `if` statement, for bindings of symbols
that weren't rebound in any branch, simplifies back to `true`. But there
are still some cases we generate constraints that are cyclic. With
fixed-point cycle support in salsa, or with some careful analysis of the
still-failing cases, we might be able to remove those.
## Summary
This is a follow-up to #15726, #15778, and #15794 to preserve the triple
quote and prefix flags in plain strings, bytestrings, and f-strings.
I also added a `StringLiteralFlags::without_triple_quotes` method to
avoid passing along triple quotes in rules like SIM905 where it might
not make sense, as discussed
[here](https://github.com/astral-sh/ruff/pull/15726#discussion_r1930532426).
## Test Plan
Existing tests, plus many new cases in the `generator::tests::quote`
test that should cover all combinations of quotes and prefixes, at least
for simple string bodies.
Closes#7799 when combined with #15694, #15726, #15778, and #15794.
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
## Summary
This is another follow-up to #15726 and #15778, extending the
quote-preserving behavior to f-strings and deleting the now-unused
`Generator::quote` field.
## Details
I also made one unrelated change to `rules/flynt/helpers.rs` to remove a
`to_string` call for making a `Box<str>` and tweaked some arguments to
some of the `Generator::unparse_f_string` methods to make the code
easier to follow, in my opinion. Happy to revert especially the latter
of these if needed.
Unfortunately this still does not fix the issue in #9660, which appears
to be more of an escaping issue than a quote-preservation issue. After
#15726, the result is now `a = f'# {"".join([])}' if 1 else ""` instead
of `a = f"# {''.join([])}" if 1 else ""` (single quotes on the outside
now), but we still don't have the desired behavior of double quotes
everywhere on Python 3.12+. I added a test for this but split it off
into another branch since it ended up being unaddressed here, but my
`dbg!` statements showed the correct preferred quotes going into
[`UnicodeEscape::with_preferred_quote`](https://github.com/astral-sh/ruff/blob/main/crates/ruff_python_literal/src/escape.rs#L54).
## Test Plan
Existing rule and `Generator` tests.
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
## Summary
This is a very closely related follow-up to #15726, adding the same
quote-preserving behavior to bytestrings. Only one rule (UP018) was
affected this time, and it was easy to mirror the plain string changes.
## Test Plan
Existing tests
## Summary
This is a first step toward fixing #7799 by using the quoting style
stored in the `flags` field on `ast::StringLiteral`s to select a quoting
style. This PR does not include support for f-strings or byte strings.
Several rules also needed small updates to pass along existing quoting
styles instead of using `StringLiteralFlags::default()`. The remaining
snapshot changes are intentional and should preserve the quotes from the
input strings.
## Test Plan
Existing tests with some accepted updates, plus a few new RUF055 tests
for raw strings.
---------
Co-authored-by: Alex Waygood <alex.waygood@gmail.com>
This PR replaces most of the hard-coded AST definitions with a
generation script, similar to what happens in `rust_python_formatter`.
I've replaced every "rote" definition that I could find, where the
content is entirely boilerplate and only depends on what syntax nodes
there are and which groups they belong to.
This is a pretty massive diff, but it's entirely a refactoring. It
should make absolutely no changes to the API or implementation. In
particular, this required adding some configuration knobs that let us
override default auto-generated names where they don't line up with
types that we created previously by hand.
## Test plan
There should be no changes outside of the `rust_python_ast` crate, which
verifies that there were no API changes as a result of the
auto-generation. Aggressive `cargo clippy` and `uvx pre-commit` runs
after each commit in the branch.
---------
Co-authored-by: Micha Reiser <micha@reiser.io>
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
## Summary
This change adds `name` and `default` functions to `TypeParam` to access
the corresponding attributes more conveniently. I currently have these
as helper functions in code built on top of ruff_python_ast, and they
seemed like they might be generally useful.
## Test Plan
Ran the checks listed in CONTRIBUTING.md#development.
---------
Co-authored-by: Micha Reiser <micha@reiser.io>
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
## Summary
fixes: #13813
This PR fixes a bug in the formatting assignment statement when the
value is an f-string.
This is resolved by using custom best fit layouts if the f-string is (a)
not already a flat f-string (thus, cannot be multiline) and (b) is not a
multiline string (thus, cannot be flattened). So, it is used in cases
like the following:
```py
aaaaaaaaaaaaaaaaaa = f"testeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee{
expression}moreeeeeeeeeeeeeeeee"
```
Which is (a) `FStringLayout::Multiline` and (b) not a multiline.
There are various other examples in the PR diff along with additional
explanation and context as code comments.
## Test Plan
Add multiple test cases for various scenarios.
## Summary
Add support for type narrowing in elif and else scopes as part of
#13694.
## Test Plan
- mdtest
- builder unit test for union negation.
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
Remove unnecessary uses of `.as_ref()`, `.iter()`, `&**` and similar, mostly in situations when iterating over variables. Many of these changes are only possible following #13826, when we bumped our MSRV to 1.80: several useful implementations on `&Box<[T]>` were only stabilised in Rust 1.80. Some of these changes we could have done earlier, however.
## Summary
This PR adds support for control flow for match statement.
It also adds the necessary infrastructure required for narrowing
constraints in case blocks and implements the logic for
`PatternMatchSingleton` which is either `None` / `True` / `False`. Even
after this the inferred type doesn't get simplified completely, there's
a TODO for that in the test code.
## Test Plan
Add test cases for control flow for (a) when there's a wildcard pattern
and (b) when there isn't. There's also a test case to verify the
narrowing logic.
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
## Summary
This PR adds the `bytes` type to red-knot:
- Added the `bytes` type
- Added support for bytes literals
- Support for the `+` operator
Improves on #12701
Big TODO on supporting and normalizing r-prefixed bytestrings
(`rb"hello\n"`)
## Test Plan
Added a test for a bytes literals, concatenation, and corner values