## Summary
Follow up to https://github.com/astral-sh/ruff/pull/11521
Removes the extra added complexity for catch all match cases. This
matches the implementation of plain `else` statements.
## Test Plan
Added new test cases.
---------
Co-authored-by: Dhruv Manilawala <dhruvmanila@gmail.com>
## Summary
This moves the string-prefix enumerations in `ruff_python_ast` to a
separate submodule. I think this helps clarify that these prefixes are
purely abstract: they only depend on each other, and do not depend on
any of the other code in `nodes.rs` in any way. Moreover, while various
AST nodes _use_ them, they're not really nodes themselves, so they feel
slightly out of place in `nodes.rs`.
I considered moving all of them to `str.rs`, but it felt like enough
code that it could be a separate submodule.
## Test Plan
`cargo test`
## Summary
This PR adds a newtype wrapper around `Vec<FStringElement>` that derefs
to a `&Vec<FStringElement>`.
Both f-string and format specifier are made up of `Vec<FStringElement>`.
By creating a newtype wrapper around it, we can share the methods for
both parent types.
## Summary
This PR renames `AnyStringKind` to `AnyStringFlags` and `AnyStringFlags`
to `AnyStringFlagsInner`.
The main motivation is to have consistent usage of "kind" and "flags".
For each string kind, it's "flags" like `StringLiteralFlags`,
`BytesLiteralFlags`, and `FStringFlags` but it was `AnyStringKind` for
the "any" variant.
## Summary
This PR adds a basic README for the `ruff_python_parser` crate and
updates the CONTRIBUTING docs with the fuzzer and benchmark section.
Additionally, it also updates some inline documentation within the
parser crate and splits the `parse_program` function into
`parse_single_expression` and `parse_module` which will be called by
matching against the `Mode`.
This PR doesn't go into too much internal detail around the parser logic
due to the following reasons:
1. Where should the docs go? Should it be as a module docs in `lib.rs`
or in README?
2. The parser is still evolving and could include a lot of refactors
with the future work (feedback loop and improved error recovery and
resilience)
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
## Summary
I happened to notice that we box `TypeParams` on `StmtClassDef` but not
on `StmtFunctionDef` and wondered why, since `StmtFunctionDef` is bigger
and sets the size of `Stmt`.
@charliermarsh found that at the time we started boxing type params on
classes, classes were the largest statement type (see #6275), but that's
no longer true.
So boxing type-params also on functions reduces the overall size of
`Stmt`.
## Test Plan
The `<=` size tests are a bit irritating (since their failure doesn't
tell you the actual size), but I manually confirmed that the size is
actually 120 now.
(Supersedes #9152, authored by @LaBatata101)
## Summary
This PR replaces the current parser generated from LALRPOP to a
hand-written recursive descent parser.
It also updates the grammar for [PEP
646](https://peps.python.org/pep-0646/) so that the parser outputs the
correct AST. For example, in `data[*x]`, the index expression is now a
tuple with a single starred expression instead of just a starred
expression.
Beyond the performance improvements, the parser is also error resilient
and can provide better error messages. The behavior as seen by any
downstream tools isn't changed. That is, the linter and formatter can
still assume that the parser will _stop_ at the first syntax error. This
will be updated in the following months.
For more details about the change here, refer to the PR corresponding to
the individual commits and the release blog post.
## Test Plan
Write _lots_ and _lots_ of tests for both valid and invalid syntax and
verify the output.
## Acknowledgements
- @MichaReiser for reviewing 100+ parser PRs and continuously providing
guidance throughout the project
- @LaBatata101 for initiating the transition to a hand-written parser in
#9152
- @addisoncrump for implementing the fuzzer which helped
[catch](https://github.com/astral-sh/ruff/pull/10903)
[a](https://github.com/astral-sh/ruff/pull/10910)
[lot](https://github.com/astral-sh/ruff/pull/10966)
[of](https://github.com/astral-sh/ruff/pull/10896)
[bugs](https://github.com/astral-sh/ruff/pull/10877)
---------
Co-authored-by: Victor Hugo Gomes <labatata101@linuxmail.org>
Co-authored-by: Micha Reiser <micha@reiser.io>
## Summary
This PR adds the `as_str` implementation for all the operator methods.
It already exists for `CmpOp` which is being [used in the
linter](ffcd77860c/crates/ruff_linter/src/rules/flake8_simplify/rules/key_in_dict.rs (L117))
and it makes sense to implement it for the rest as well. This will also
be utilized in error messages for the new parser.
## Summary
This PR removes unused operator methods and impl traits. There is
already the `is_macro::Is` implementation for all the operators and this
seems unnecessary.
## Summary
This PR adds methods on `FString` to iterate over the two different kind
of elements it can have - literals and expressions. This is similar to
the methods we have on `ExprFString`.
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
This PR modifies our AST so that nodes for string literals, bytes literals and f-strings all retain the following information:
- The quoting style used (double or single quotes)
- Whether the string is triple-quoted or not
- Whether the string is raw or not
This PR is a followup to #10256. Like with that PR, this PR does not, in itself, fix any bugs. However, it means that we will have the necessary information to preserve quoting style and rawness of strings in the `ExprGenerator` in a followup PR, which will allow us to provide a fix for https://github.com/astral-sh/ruff/issues/7799.
The information is recorded on the AST nodes using a bitflag field on each node, similarly to how we recorded the information on `Tok::String`, `Tok::FStringStart` and `Tok::FStringMiddle` tokens in #10298. Rather than reusing the bitflag I used for the tokens, however, I decided to create a custom bitflag for each AST node.
Using different bitflags for each node allows us to make invalid states unrepresentable: it is valid to set a `u` prefix on a string literal, but not on a bytes literal or an f-string. It also allows us to have better debug representations for each AST node modified in this PR.
The expression types in our AST are called `ExprYield`, `ExprAwait`,
`ExprStringLiteral` etc, except `ExprNamedExpr`, `ExprIfExpr` and
`ExprGenratorExpr`. This seems to align with [Python AST's
naming](https://docs.python.org/3/library/ast.html) but feels
inconsistent and excessive.
This PR removes the `Expr` postfix from `ExprNamedExpr`, `ExprIfExpr`,
and `ExprGeneratorExpr`.
## Summary
This PR reduces the size of `Expr` from 80 to 64 bytes, by reducing the
sizes of...
- `ExprCall` from 72 to 56 bytes, by using boxed slices for `Arguments`.
- `ExprCompare` from 64 to 48 bytes, by using boxed slices for its
various vectors.
In testing, the parser gets a bit faster, and the linter benchmarks
improve quite a bit.
This PR adds a `as_slice` method to all the string nodes which returns
all the parts of the nodes as a slice. This will be useful in the next
PR to split the string formatting to use this method to extract the
_single node_ or _implicitly concanated nodes_.
Rebase of #6365 authored by @davidszotten.
## Summary
This PR updates the AST structure for an f-string elements.
The main **motivation** behind this change is to have a dedicated node
for the string part of an f-string. Previously, the existing
`ExprStringLiteral` node was used for this purpose which isn't exactly
correct. The `ExprStringLiteral` node should include the quotes as well
in the range but the f-string literal element doesn't include the quote
as it's a specific part within an f-string. For example,
```python
f"foo {x}"
# ^^^^
# This is the literal part of an f-string
```
The introduction of `FStringElement` enum is helpful which represent
either the literal part or the expression part of an f-string.
### Rule Updates
This means that there'll be two nodes representing a string depending on
the context. One for a normal string literal while the other is a string
literal within an f-string. The AST checker is updated to accommodate
this change. The rules which work on string literal are updated to check
on the literal part of f-string as well.
#### Notes
1. The `Expr::is_literal_expr` method would check for
`ExprStringLiteral` and return true if so. But now that we don't
represent the literal part of an f-string using that node, this improves
the method's behavior and confines to the actual expression. We do have
the `FStringElement::is_literal` method.
2. We avoid checking if we're in a f-string context before adding to
`string_type_definitions` because the f-string literal is now a
dedicated node and not part of `Expr`.
3. Annotations cannot use f-string so we avoid changing any rules which
work on annotation and checks for `ExprStringLiteral`.
## Test Plan
- All references of `Expr::StringLiteral` were checked to see if any of
the rules require updating to account for the f-string literal element
node.
- New test cases are added for rules which check against the literal
part of an f-string.
- Check the ecosystem results and ensure it remains unchanged.
## Performance
There's a performance penalty in the parser. The reason for this remains
unknown as it seems that the generated assembly code is now different
for the `__reduce154` function. The reduce function body is just popping
the `ParenthesizedExpr` on top of the stack and pushing it with the new
location.
- The size of `FStringElement` enum is the same as `Expr` which is what
it replaces in `FString::format_spec`
- The size of `FStringExpressionElement` is the same as
`ExprFormattedValue` which is what it replaces
I tried reducing the `Expr` enum from 80 bytes to 72 bytes but it hardly
resulted in any performance gain. The difference can be seen here:
- Original profile: https://share.firefox.dev/3Taa7ES
- Profile after boxing some node fields:
https://share.firefox.dev/3GsNXpD
### Backtracking
I tried backtracking the changes to see if any of the isolated change
produced this regression. The problem here is that the overall change is
so small that there's only a single checkpoint where I can backtrack and
that checkpoint results in the same regression. This checkpoint is to
revert using `Expr` to the `FString::format_spec` field. After this
point, the change would revert back to the original implementation.
## Review process
The review process is similar to #7927. The first set of commits update
the node structure, parser, and related AST files. Then, further commits
update the linter and formatter part to account for the AST change.
---------
Co-authored-by: David Szotten <davidszotten@gmail.com>
## Summary
This PR is a follow-up to the AST refactor which does the following:
- Remove `Deref` implementation on `StringLiteralValue` and use explicit
`as_str` calls instead. The `Deref` implementation would implicitly
perform allocations in case of implicitly concatenated strings. This is
to make sure the allocation is explicit.
- Now, certain methods can be implemented to do zero allocations which
have been implemented in this PR. They are:
- `is_empty`
- `len`
- `chars`
- Custom `PartialEq` implementation to compare each character
## Test Plan
Run the linter test suite and make sure all tests pass.
## Summary
This PR updates the string nodes (`ExprStringLiteral`,
`ExprBytesLiteral`, and `ExprFString`) to account for implicit string
concatenation.
### Motivation
In Python, implicit string concatenation are joined while parsing
because the interpreter doesn't require the information for each part.
While that's feasible for an interpreter, it falls short for a static
analysis tool where having such information is more useful. Currently,
various parts of the code uses the lexer to get the individual string
parts.
One of the main challenge this solves is that of string formatting.
Currently, the formatter relies on the lexer to get the individual
string parts, and formats them including the comments accordingly. But,
with PEP 701, f-string can also contain comments. Without this change,
it becomes very difficult to add support for f-string formatting.
### Implementation
The initial proposal was made in this discussion:
https://github.com/astral-sh/ruff/discussions/6183#discussioncomment-6591993.
There were various AST designs which were explored for this task which
are available in the linked internal document[^1].
The selected variant was the one where the nodes were kept as it is
except that the `implicit_concatenated` field was removed and instead a
new struct was added to the `Expr*` struct. This would be a private
struct would contain the actual implementation of how the AST is
designed for both single and implicitly concatenated strings.
This implementation is achieved through an enum with two variants:
`Single` and `Concatenated` to avoid allocating a vector even for single
strings. There are various public methods available on the value struct
to query certain information regarding the node.
The nodes are structured in the following way:
```
ExprStringLiteral - "foo" "bar"
|- StringLiteral - "foo"
|- StringLiteral - "bar"
ExprBytesLiteral - b"foo" b"bar"
|- BytesLiteral - b"foo"
|- BytesLiteral - b"bar"
ExprFString - "foo" f"bar {x}"
|- FStringPart::Literal - "foo"
|- FStringPart::FString - f"bar {x}"
|- StringLiteral - "bar "
|- FormattedValue - "x"
```
[^1]: Internal document:
https://www.notion.so/astral-sh/Implicit-String-Concatenation-e036345dc48943f89e416c087bf6f6d9?pvs=4
#### Visitor
The way the nodes are structured is that the entire string, including
all the parts that are implicitly concatenation, is a single node
containing individual nodes for the parts. The previous section has a
representation of that tree for all the string nodes. This means that
new visitor methods are added to visit the individual parts of string,
bytes, and f-strings for `Visitor`, `PreorderVisitor`, and
`Transformer`.
## Test Plan
- `cargo insta test --workspace --all-features --unreferenced reject`
- Verify that the ecosystem results are unchanged
## Summary
This PR adds a new `LiteralExpressionRef` which wraps all of the literal
expression nodes in a single enum. This allows for a narrow type when
working exclusively with a literal node. Additionally, it also
implements a `Expr::as_literal_expr` method to return the new enum if
the expression is indeed a literal one.
A few rules have been updated to account for the new enum:
1. `redundant_literal_union`
2. `if_else_block_instead_of_dict_lookup`
3. `magic_value_comparison`
To account for the change in (2), a new `ComparableLiteral` has been
added which can be constructed from the new enum
(`ComparableLiteral::from(<LiteralExpressionRef>)`).
### Open Questions
1. The new `ComparableLiteral` can be exclusively used via the
`LiteralExpressionRef` enum. Should we remove all of the literal
variants from `ComparableExpr` and instead have a single
`ComparableExpr::Literal(ComparableLiteral)` variant instead?
## Test Plan
`cargo test`
## Summary
This PR adds `Default` for the following literal nodes:
* `StringLiteral`
* `BytesLiteral`
* `BooleanLiteral`
* `NoneLiteral`
* `EllipsisLiteral`
The implementation creates the zero value of the respective literal
nodes in terms of the Python language.
## Test Plan
`cargo test`
## Summary
This PR splits the `Constant` enum as individual literal nodes. It
introduces the following new nodes for each variant:
* `ExprStringLiteral`
* `ExprBytesLiteral`
* `ExprNumberLiteral`
* `ExprBooleanLiteral`
* `ExprNoneLiteral`
* `ExprEllipsisLiteral`
The main motivation behind this refactor is to introduce the new AST
node for implicit string concatenation in the coming PR. The elements of
that node will be either a string literal, bytes literal or a f-string
which can be implemented using an enum. This means that a string or
bytes literal cannot be represented by `Constant::Str` /
`Constant::Bytes` which creates an inconsistency.
This PR avoids that inconsistency by splitting the constant nodes into
it's own literal nodes, literal being the more appropriate naming
convention from a static analysis tool perspective.
This also makes working with literals in the linter and formatter much
more ergonomic like, for example, if one would want to check if this is
a string literal, it can be done easily using
`Expr::is_string_literal_expr` or matching against `Expr::StringLiteral`
as oppose to matching against the `ExprConstant` and enum `Constant`. A
few AST helper methods can be simplified as well which will be done in a
follow-up PR.
This introduces a new `Expr::is_literal_expr` method which is the same
as `Expr::is_constant_expr`. There are also intermediary changes related
to implicit string concatenation which are quiet less. This is done so
as to avoid having a huge PR which this already is.
## Test Plan
1. Verify and update all of the existing snapshots (parser, visitor)
2. Verify that the ecosystem check output remains **unchanged** for both
the linter and formatter
### Formatter ecosystem check
#### `main`
| project | similarity index | total files | changed files |
|----------------|------------------:|------------------:|------------------:|
| cpython | 0.75803 | 1799 | 1647 |
| django | 0.99983 | 2772 | 34 |
| home-assistant | 0.99953 | 10596 | 186 |
| poetry | 0.99891 | 317 | 17 |
| transformers | 0.99966 | 2657 | 330 |
| twine | 1.00000 | 33 | 0 |
| typeshed | 0.99978 | 3669 | 20 |
| warehouse | 0.99977 | 654 | 13 |
| zulip | 0.99970 | 1459 | 22 |
#### `dhruv/constant-to-literal`
| project | similarity index | total files | changed files |
|----------------|------------------:|------------------:|------------------:|
| cpython | 0.75803 | 1799 | 1647 |
| django | 0.99983 | 2772 | 34 |
| home-assistant | 0.99953 | 10596 | 186 |
| poetry | 0.99891 | 317 | 17 |
| transformers | 0.99966 | 2657 | 330 |
| twine | 1.00000 | 33 | 0 |
| typeshed | 0.99978 | 3669 | 20 |
| warehouse | 0.99977 | 654 | 13 |
| zulip | 0.99970 | 1459 | 22 |
## Summary
This PR adds a new `Singleton` enum for the `PatternMatchSingleton`
node.
Earlier the node was using the `Constant` enum but the value for this
pattern can only be either `None`, `True` or `False`. With the coming PR
to remove the `Constant`, this node required a new type to fill in.
This also has the benefit of narrowing the type down to only the
possible values for the node as evident by the removal of `unreachable`.
## Test Plan
Update the AST snapshots and run `cargo test`.
## Summary
This is a follow-up to #7469 that attempts to achieve similar gains, but
without introducing malachite. Instead, this PR removes the `BigInt`
type altogether, instead opting for a simple enum that allows us to
store small integers directly and only allocate for values greater than
`i64`:
```rust
/// A Python integer literal. Represents both small (fits in an `i64`) and large integers.
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct Int(Number);
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub enum Number {
/// A "small" number that can be represented as an `i64`.
Small(i64),
/// A "large" number that cannot be represented as an `i64`.
Big(Box<str>),
}
impl std::fmt::Display for Number {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Number::Small(value) => write!(f, "{value}"),
Number::Big(value) => write!(f, "{value}"),
}
}
}
```
We typically don't care about numbers greater than `isize` -- our only
uses are comparisons against small constants (like `1`, `2`, `3`, etc.),
so there's no real loss of information, except in one or two rules where
we're now a little more conservative (with the worst-case being that we
don't flag, e.g., an `itertools.pairwise` that uses an extremely large
value for the slice start constant). For simplicity, a few diagnostics
now show a dedicated message when they see integers that are out of the
supported range (e.g., `outdated-version-block`).
An additional benefit here is that we get to remove a few dependencies,
especially `num-bigint`.
## Test Plan
`cargo test`
## Summary
This is only used for the `level` field in relative imports (e.g., `from
..foo import bar`). It seems unnecessary to use a wrapper here, so this
PR changes to a `u32` directly.
## Summary
If a function has no parameters (and no comments within the parameters'
`()`), we're supposed to wrap the return annotation _whenever_ it
breaks. However, our `empty_parameters` test didn't properly account for
the case in which the parameters include a newline (but no other
content), like:
```python
def get_dashboards_hierarchy(
) -> Dict[Type['BaseDashboard'], List[Type['BaseDashboard']]]:
"""Get hierarchy of dashboards classes.
Returns:
Dict of dashboards classes.
"""
dashboards_hierarchy = {}
```
This PR fixes that detection. Instead of lexing, it now checks if the
parameters itself is empty (or if it contains comments).
Closes https://github.com/astral-sh/ruff/issues/7457.
## Motivation
The `ast::Arguments` for call argument are split into positional
arguments (args) and keywords arguments (keywords). We currently assume
that call consists of first args and then keywords, which is generally
the case, but not always:
```python
f(*args, a=2, *args2, **kwargs)
class A(*args, a=2, *args2, **kwargs):
pass
```
The consequence is accidentally reordering arguments
(https://github.com/astral-sh/ruff/pull/7268).
## Summary
`Arguments::args_and_keywords` returns an iterator of an `ArgOrKeyword`
enum that yields args and keywords in the correct order. I've fixed the
obvious `args` and `keywords` usages, but there might be some cases with
wrong assumptions remaining.
## Test Plan
The generator got new test cases, otherwise the stacked PR
(https://github.com/astral-sh/ruff/pull/7268) which uncovered this.