ruff/crates/ty_python_semantic/resources/mdtest/call/overloads.md
Douglas Creager 7673d46b71
[ty] Splat variadic arguments into parameter list (#18996)
This PR updates our call binding logic to handle splatted arguments.

Complicating matters is that we have separated call bind analysis into
two phases: parameter matching and type checking. Parameter matching
looks at the arity of the function signature and call site, and assigns
arguments to parameters. Importantly, we don't yet know the type of each
argument! This is needed so that we can decide whether to infer the type
of each argument as a type form or value form, depending on the
requirements of the parameter that the argument was matched to.

This is an issue when splatting an argument, since we need to know how
many elements the splatted argument contains to know how many positional
parameters to match it against. And to know how many elements the
splatted argument has, we need to know its type.

To get around this, we now make the assumption that splatted arguments
can only be used with value-form parameters. (If you end up splatting an
argument into a type-form parameter, we will silently pass in its
value-form type instead.) That allows us to preemptively infer the
(value-form) type of any splatted argument, so that we have its arity
available during parameter matching. We defer inference of non-splatted
arguments until after parameter matching has finished, as before.

We reuse a lot of the new tuple machinery to make this happen — in
particular resizing the tuple spec representing the number of arguments
passed in with the tuple length representing the number of parameters
the splat was matched with.

This work also shows that we might need to change how we are performing
argument expansion during overload resolution. At the moment, when we
expand parameters, we assume that each argument will still be matched to
the same parameters as before, and only retry the type-checking phase.
With splatted arguments, this is no longer the case, since the inferred
arity of each union element might be different than the arity of the
union as a whole, which can affect how many parameters the splatted
argument is matched to. See the regression test case in
`mdtest/call/function.md` for more details.
2025-07-22 14:33:08 -04:00

30 KiB
Raw Blame History

Overloads

When ty evaluates the call of an overloaded function, it attempts to "match" the supplied arguments with one or more overloads. This document describes the algorithm that it uses for overload matching, which is the same as the one mentioned in the spec.

Note that all of the examples that involve positional parameters are tested multiple times: once with the parameters matched with individual positional arguments, and once with the parameters matched with a single positional argument that is splatted into the argument list. Overload resolution is performed after splatted arguments have been expanded, and so both approaches (TODO: should) produce the same results.

Arity check

The first step is to perform arity check. The non-overloaded cases are described in the function document.

overloaded.pyi:

from typing import overload

@overload
def f() -> None: ...
@overload
def f(x: int) -> int: ...
from overloaded import f

# These match a single overload
reveal_type(f())  # revealed: None
reveal_type(f(*()))  # revealed: None

reveal_type(f(1))  # revealed: int
reveal_type(f(*(1,)))  # revealed: int

# error: [no-matching-overload] "No overload of function `f` matches arguments"
reveal_type(f("a", "b"))  # revealed: Unknown
# error: [no-matching-overload] "No overload of function `f` matches arguments"
reveal_type(f(*("a", "b")))  # revealed: Unknown

Type checking

The second step is to perform type checking. This is done for all the overloads that passed the arity check.

Single match

overloaded.pyi:

from typing import overload

@overload
def f(x: int) -> int: ...
@overload
def f(x: str) -> str: ...
@overload
def f(x: bytes) -> bytes: ...

Here, all of the calls below pass the arity check for all overloads, so we proceed to type checking which filters out all but the matching overload:

from overloaded import f

reveal_type(f(1))  # revealed: int
reveal_type(f(*(1,)))  # revealed: int

reveal_type(f("a"))  # revealed: str
reveal_type(f(*("a",)))  # revealed: str

reveal_type(f(b"b"))  # revealed: bytes
reveal_type(f(*(b"b",)))  # revealed: bytes

Single match error

overloaded.pyi:

from typing import overload

@overload
def f() -> None: ...
@overload
def f(x: int) -> int: ...
@overload
def f(x: int, y: int) -> int: ...

If the arity check only matches a single overload, it should be evaluated as a regular (non-overloaded) function call. This means that any diagnostics resulted during type checking that call should be reported directly and not as a no-matching-overload error.

from typing_extensions import reveal_type

from overloaded import f

reveal_type(f())  # revealed: None
reveal_type(f(*()))  # revealed: None

# error: [invalid-argument-type] "Argument to function `f` is incorrect: Expected `int`, found `Literal["a"]`"
reveal_type(f("a"))  # revealed: Unknown
# error: [invalid-argument-type] "Argument to function `f` is incorrect: Expected `int`, found `Literal["a"]`"
reveal_type(f(*("a",)))  # revealed: Unknown

More examples of this diagnostic can be found in the single_matching_overload.md document.

Multiple matches

overloaded.pyi:

from typing import overload

class A: ...
class B(A): ...

@overload
def f(x: A) -> A: ...
@overload
def f(x: B, y: int = 0) -> B: ...
from overloaded import A, B, f

# These calls pass the arity check, and type checking matches both overloads:
reveal_type(f(A()))  # revealed: A
reveal_type(f(*(A(),)))  # revealed: A

reveal_type(f(B()))  # revealed: A
# TODO: revealed: A
reveal_type(f(*(B(),)))  # revealed: Unknown

# But, in this case, the arity check filters out the first overload, so we only have one match:
reveal_type(f(B(), 1))  # revealed: B
reveal_type(f(*(B(), 1)))  # revealed: B

Argument type expansion

This step is performed only if the previous steps resulted in no matches.

In this case, the algorithm would perform argument type expansion and loops over from the type checking step, evaluating the argument lists.

Expanding the only argument

overloaded.pyi:

from typing import overload

class A: ...
class B: ...
class C: ...

@overload
def f(x: A) -> A: ...
@overload
def f(x: B) -> B: ...
@overload
def f(x: C) -> C: ...
from overloaded import A, B, C, f

def _(ab: A | B, ac: A | C, bc: B | C):
    reveal_type(f(ab))  # revealed: A | B
    reveal_type(f(*(ab,)))  # revealed: A | B

    reveal_type(f(bc))  # revealed: B | C
    reveal_type(f(*(bc,)))  # revealed: B | C

    reveal_type(f(ac))  # revealed: A | C
    reveal_type(f(*(ac,)))  # revealed: A | C

Expanding first argument

If the set of argument lists created by expanding the first argument evaluates successfully, the algorithm shouldn't expand the second argument.

overloaded.pyi:

from typing import Literal, overload

class A: ...
class B: ...
class C: ...
class D: ...

@overload
def f(x: A, y: C) -> A: ...
@overload
def f(x: A, y: D) -> B: ...
@overload
def f(x: B, y: C) -> C: ...
@overload
def f(x: B, y: D) -> D: ...
from overloaded import A, B, C, D, f

def _(a_b: A | B):
    reveal_type(f(a_b, C()))  # revealed: A | C
    reveal_type(f(*(a_b, C())))  # revealed: A | C

    reveal_type(f(a_b, D()))  # revealed: B | D
    reveal_type(f(*(a_b, D())))  # revealed: B | D

# But, if it doesn't, it should expand the second argument and try again:
def _(a_b: A | B, c_d: C | D):
    reveal_type(f(a_b, c_d))  # revealed: A | B | C | D
    reveal_type(f(*(a_b, c_d)))  # revealed: A | B | C | D

Expanding second argument

If the first argument cannot be expanded, the algorithm should move on to the second argument, keeping the first argument as is.

overloaded.pyi:

from typing import overload

class A: ...
class B: ...
class C: ...
class D: ...

@overload
def f(x: A, y: B) -> B: ...
@overload
def f(x: A, y: C) -> C: ...
@overload
def f(x: B, y: D) -> D: ...
from overloaded import A, B, C, D, f

def _(a: A, bc: B | C, cd: C | D):
    # This also tests that partial matching works correctly as the argument type expansion results
    # in matching the first and second overloads, but not the third one.
    reveal_type(f(a, bc))  # revealed: B | C
    reveal_type(f(*(a, bc)))  # revealed: B | C

    # error: [no-matching-overload] "No overload of function `f` matches arguments"
    reveal_type(f(a, cd))  # revealed: Unknown
    # error: [no-matching-overload] "No overload of function `f` matches arguments"
    reveal_type(f(*(a, cd)))  # revealed: Unknown

Generics (legacy)

overloaded.pyi:

from typing import TypeVar, overload

_T = TypeVar("_T")

class A: ...
class B: ...

@overload
def f(x: A) -> A: ...
@overload
def f(x: _T) -> _T: ...
from overloaded import A, f

def _(x: int, y: A | int):
    reveal_type(f(x))  # revealed: int
    # TODO: revealed: int
    # TODO: no error
    # error: [no-matching-overload]
    reveal_type(f(*(x,)))  # revealed: Unknown

    reveal_type(f(y))  # revealed: A | int
    # TODO: revealed: A | int
    # TODO: no error
    # error: [no-matching-overload]
    reveal_type(f(*(y,)))  # revealed: Unknown

Generics (PEP 695)

[environment]
python-version = "3.12"

overloaded.pyi:

from typing import overload

class A: ...
class B: ...

@overload
def f(x: B) -> B: ...
@overload
def f[T](x: T) -> T: ...
from overloaded import B, f

def _(x: int, y: B | int):
    reveal_type(f(x))  # revealed: int
    # TODO: revealed: int
    # TODO: no error
    # error: [no-matching-overload]
    reveal_type(f(*(x,)))  # revealed: Unknown

    reveal_type(f(y))  # revealed: B | int
    # TODO: revealed: B | int
    # TODO: no error
    # error: [no-matching-overload]
    reveal_type(f(*(y,)))  # revealed: Unknown

Expanding bool

overloaded.pyi:

from typing import Literal, overload

class T: ...
class F: ...

@overload
def f(x: Literal[True]) -> T: ...
@overload
def f(x: Literal[False]) -> F: ...
from overloaded import f

def _(flag: bool):
    reveal_type(f(True))  # revealed: T
    reveal_type(f(*(True,)))  # revealed: T

    reveal_type(f(False))  # revealed: F
    reveal_type(f(*(False,)))  # revealed: F

    reveal_type(f(flag))  # revealed: T | F
    reveal_type(f(*(flag,)))  # revealed: T | F

Expanding tuple

overloaded.pyi:

from typing import Literal, overload

class A: ...
class B: ...
class C: ...
class D: ...

@overload
def f(x: tuple[A, int], y: tuple[int, Literal[True]]) -> A: ...
@overload
def f(x: tuple[A, int], y: tuple[int, Literal[False]]) -> B: ...
@overload
def f(x: tuple[B, int], y: tuple[int, Literal[True]]) -> C: ...
@overload
def f(x: tuple[B, int], y: tuple[int, Literal[False]]) -> D: ...
from overloaded import A, B, f

def _(x: tuple[A | B, int], y: tuple[int, bool]):
    reveal_type(f(x, y))  # revealed: A | B | C | D
    reveal_type(f(*(x, y)))  # revealed: A | B | C | D

Expanding type

There's no special handling for expanding type[A | B] type because ty stores this type in it's distributed form, which is type[A] | type[B].

overloaded.pyi:

from typing import overload

class A: ...
class B: ...

@overload
def f(x: type[A]) -> A: ...
@overload
def f(x: type[B]) -> B: ...
from overloaded import A, B, f

def _(x: type[A | B]):
    reveal_type(x)  # revealed: type[A] | type[B]
    reveal_type(f(x))  # revealed: A | B
    reveal_type(f(*(x,)))  # revealed: A | B

Expanding enums

Basic

overloaded.pyi:

from enum import Enum
from typing import Literal, overload

class SomeEnum(Enum):
    A = 1
    B = 2
    C = 3


class A: ...
class B: ...
class C: ...

@overload
def f(x: Literal[SomeEnum.A]) -> A: ...
@overload
def f(x: Literal[SomeEnum.B]) -> B: ...
@overload
def f(x: Literal[SomeEnum.C]) -> C: ...
from typing import Literal
from overloaded import SomeEnum, A, B, C, f

def _(x: SomeEnum, y: Literal[SomeEnum.A, SomeEnum.C]):
    reveal_type(f(SomeEnum.A))  # revealed: A
    reveal_type(f(*(SomeEnum.A,)))  # revealed: A

    reveal_type(f(SomeEnum.B))  # revealed: B
    reveal_type(f(*(SomeEnum.B,)))  # revealed: B

    reveal_type(f(SomeEnum.C))  # revealed: C
    reveal_type(f(*(SomeEnum.C,)))  # revealed: C

    reveal_type(f(x))  # revealed: A | B | C
    reveal_type(f(*(x,)))  # revealed: A | B | C

    reveal_type(f(y))  # revealed: A | C
    reveal_type(f(*(y,)))  # revealed: A | C

Enum with single member

This pattern appears in typeshed. Here, it is used to represent two optional, mutually exclusive keyword parameters:

overloaded.pyi:

from enum import Enum, auto
from typing import overload, Literal

class Missing(Enum):
    Value = auto()

class OnlyASpecified: ...
class OnlyBSpecified: ...
class BothMissing: ...

@overload
def f(*, a: int, b: Literal[Missing.Value] = ...) -> OnlyASpecified: ...
@overload
def f(*, a: Literal[Missing.Value] = ..., b: int) -> OnlyBSpecified: ...
@overload
def f(*, a: Literal[Missing.Value] = ..., b: Literal[Missing.Value] = ...) -> BothMissing: ...
from typing import Literal
from overloaded import f, Missing

reveal_type(f())  # revealed: BothMissing
reveal_type(f(a=0))  # revealed: OnlyASpecified
reveal_type(f(b=0))  # revealed: OnlyBSpecified

f(a=0, b=0)  # error: [no-matching-overload]

def _(missing: Literal[Missing.Value], missing_or_present: Literal[Missing.Value] | int):
    reveal_type(f(a=missing, b=missing))  # revealed: BothMissing
    reveal_type(f(a=missing))  # revealed: BothMissing
    reveal_type(f(b=missing))  # revealed: BothMissing
    reveal_type(f(a=0, b=missing))  # revealed: OnlyASpecified
    reveal_type(f(a=missing, b=0))  # revealed: OnlyBSpecified

    reveal_type(f(a=missing_or_present))  # revealed: BothMissing | OnlyASpecified
    reveal_type(f(b=missing_or_present))  # revealed: BothMissing | OnlyBSpecified

    # Here, both could be present, so this should be an error
    f(a=missing_or_present, b=missing_or_present)  # error: [no-matching-overload]

Enum subclass without members

An Enum subclass without members should not be expanded:

overloaded.pyi:

from enum import Enum
from typing import overload, Literal

class MyEnumSubclass(Enum):
    pass

class ActualEnum(MyEnumSubclass):
    A = 1
    B = 2

class OnlyA: ...
class OnlyB: ...
class Both: ...

@overload
def f(x: Literal[ActualEnum.A]) -> OnlyA: ...
@overload
def f(x: Literal[ActualEnum.B]) -> OnlyB: ...
@overload
def f(x: ActualEnum) -> Both: ...
@overload
def f(x: MyEnumSubclass) -> MyEnumSubclass: ...
from overloaded import MyEnumSubclass, ActualEnum, f

def _(actual_enum: ActualEnum, my_enum_instance: MyEnumSubclass):
    reveal_type(f(actual_enum))  # revealed: Both
    # TODO: revealed: Both
    reveal_type(f(*(actual_enum,)))  # revealed: Unknown

    reveal_type(f(ActualEnum.A))  # revealed: OnlyA
    # TODO: revealed: OnlyA
    reveal_type(f(*(ActualEnum.A,)))  # revealed: Unknown

    reveal_type(f(ActualEnum.B))  # revealed: OnlyB
    # TODO: revealed: OnlyB
    reveal_type(f(*(ActualEnum.B,)))  # revealed: Unknown

    reveal_type(f(my_enum_instance))  # revealed: MyEnumSubclass
    reveal_type(f(*(my_enum_instance,)))  # revealed: MyEnumSubclass

No matching overloads

If argument expansion has been applied to all arguments and one or more of the expanded argument lists cannot be evaluated successfully, generate an error and stop.

overloaded.pyi:

from typing import overload

class A: ...
class B: ...
class C: ...
class D: ...

@overload
def f(x: A) -> A: ...
@overload
def f(x: B) -> B: ...
from overloaded import A, B, C, D, f

def _(ab: A | B, ac: A | C, cd: C | D):
    reveal_type(f(ab))  # revealed: A | B
    reveal_type(f(*(ab,)))  # revealed: A | B

    # The `[A | C]` argument list is expanded to `[A], [C]` where the first list matches the first
    # overload while the second list doesn't match any of the overloads, so we generate an
    # error: [no-matching-overload] "No overload of function `f` matches arguments"
    reveal_type(f(ac))  # revealed: Unknown
    # error: [no-matching-overload] "No overload of function `f` matches arguments"
    reveal_type(f(*(ac,)))  # revealed: Unknown

    # None of the expanded argument lists (`[C], [D]`) match any of the overloads, so we generate an
    # error: [no-matching-overload] "No overload of function `f` matches arguments"
    reveal_type(f(cd))  # revealed: Unknown
    # error: [no-matching-overload] "No overload of function `f` matches arguments"
    reveal_type(f(*(cd,)))  # revealed: Unknown

Filtering based on Any / Unknown

This is the step 5 of the overload call evaluation algorithm which specifies that:

For all arguments, determine whether all possible materializations of the arguments type are assignable to the corresponding parameter type for each of the remaining overloads. If so, eliminate all of the subsequent remaining overloads.

This is only performed if the previous step resulted in more than one matching overload.

Single list argument

overloaded.pyi:

from typing import Any, overload

@overload
def f(x: list[int]) -> int: ...
@overload
def f(x: list[Any]) -> int: ...
@overload
def f(x: Any) -> str: ...

For the above definition, anything other than list should match the last overload:

from typing import Any

from overloaded import f

# Anything other than `list` should match the last overload
reveal_type(f(1))  # revealed: str
reveal_type(f(*(1,)))  # revealed: str

def _(list_int: list[int], list_any: list[Any]):
    reveal_type(f(list_int))  # revealed: int
    # TODO: revealed: int
    reveal_type(f(*(list_int,)))  # revealed: Unknown

    reveal_type(f(list_any))  # revealed: int
    # TODO: revealed: int
    reveal_type(f(*(list_any,)))  # revealed: Unknown

Single list argument (ambiguous)

The overload definition is the same as above, but the return type of the second overload is changed to str to make the overload matching ambiguous if the argument is a list[Any].

overloaded.pyi:

from typing import Any, overload

@overload
def f(x: list[int]) -> int: ...
@overload
def f(x: list[Any]) -> str: ...
@overload
def f(x: Any) -> str: ...
from typing import Any

from overloaded import f

# Anything other than `list` should match the last overload
reveal_type(f(1))  # revealed: str
reveal_type(f(*(1,)))  # revealed: str

def _(list_int: list[int], list_any: list[Any]):
    # All materializations of `list[int]` are assignable to `list[int]`, so it matches the first
    # overload.
    reveal_type(f(list_int))  # revealed: int
    # TODO: revealed: int
    reveal_type(f(*(list_int,)))  # revealed: Unknown

    # All materializations of `list[Any]` are assignable to `list[int]` and `list[Any]`, but the
    # return type of first and second overloads are not equivalent, so the overload matching
    # is ambiguous.
    reveal_type(f(list_any))  # revealed: Unknown
    reveal_type(f(*(list_any,)))  # revealed: Unknown

Single tuple argument

overloaded.pyi:

from typing import Any, overload

@overload
def f(x: tuple[int, str]) -> int: ...
@overload
def f(x: tuple[int, Any]) -> int: ...
@overload
def f(x: Any) -> str: ...
from typing import Any

from overloaded import f

reveal_type(f("a"))  # revealed: str
reveal_type(f(*("a",)))  # revealed: str

reveal_type(f((1, "b")))  # revealed: int
# TODO: revealed: int
reveal_type(f(*((1, "b"),)))  # revealed: Unknown

reveal_type(f((1, 2)))  # revealed: int
# TODO: revealed: int
reveal_type(f(*((1, 2),)))  # revealed: Unknown

def _(int_str: tuple[int, str], int_any: tuple[int, Any], any_any: tuple[Any, Any]):
    # All materializations are assignable to first overload, so second and third overloads are
    # eliminated
    reveal_type(f(int_str))  # revealed: int
    # TODO: revealed: int
    reveal_type(f(*(int_str,)))  # revealed: Unknown

    # All materializations are assignable to second overload, so the third overload is eliminated;
    # the return type of first and second overload is equivalent
    reveal_type(f(int_any))  # revealed: int
    # TODO: revealed: int
    reveal_type(f(*(int_any,)))  # revealed: Unknown

    # All materializations of `tuple[Any, Any]` are assignable to the parameters of all the
    # overloads, but the return types aren't equivalent, so the overload matching is ambiguous
    reveal_type(f(any_any))  # revealed: Unknown
    reveal_type(f(*(any_any,)))  # revealed: Unknown

Multiple arguments

overloaded.pyi:

from typing import Any, overload

class A: ...
class B: ...

@overload
def f(x: list[int], y: tuple[int, str]) -> A: ...
@overload
def f(x: list[Any], y: tuple[int, Any]) -> A: ...
@overload
def f(x: list[Any], y: tuple[Any, Any]) -> B: ...
from typing import Any

from overloaded import A, f

def _(list_int: list[int], list_any: list[Any], int_str: tuple[int, str], int_any: tuple[int, Any], any_any: tuple[Any, Any]):
    # All materializations of both argument types are assignable to the first overload, so the
    # second and third overloads are filtered out
    reveal_type(f(list_int, int_str))  # revealed: A
    # TODO: revealed: A
    reveal_type(f(*(list_int, int_str)))  # revealed: Unknown

    # All materialization of first argument is assignable to first overload and for the second
    # argument, they're assignable to the second overload, so the third overload is filtered out
    reveal_type(f(list_int, int_any))  # revealed: A
    # TODO: revealed: A
    reveal_type(f(*(list_int, int_any)))  # revealed: Unknown

    # All materialization of first argument is assignable to second overload and for the second
    # argument, they're assignable to the first overload, so the third overload is filtered out
    reveal_type(f(list_any, int_str))  # revealed: A
    # TODO: revealed: A
    reveal_type(f(*(list_any, int_str)))  # revealed: Unknown

    # All materializations of both arguments are assignable to the second overload, so the third
    # overload is filtered out
    reveal_type(f(list_any, int_any))  # revealed: A
    # TODO: revealed: A
    reveal_type(f(*(list_any, int_any)))  # revealed: Unknown

    # All materializations of first argument is assignable to the second overload and for the second
    # argument, they're assignable to the third overload, so no overloads are filtered out; the
    # return types of the remaining overloads are not equivalent, so overload matching is ambiguous
    reveal_type(f(list_int, any_any))  # revealed: Unknown
    reveal_type(f(*(list_int, any_any)))  # revealed: Unknown

LiteralString and str

overloaded.pyi:

from typing import overload
from typing_extensions import LiteralString

@overload
def f(x: LiteralString) -> LiteralString: ...
@overload
def f(x: str) -> str: ...
from typing import Any
from typing_extensions import LiteralString

from overloaded import f

def _(literal: LiteralString, string: str, any: Any):
    reveal_type(f(literal))  # revealed: LiteralString
    # TODO: revealed: LiteralString
    reveal_type(f(*(literal,)))  # revealed: Unknown

    reveal_type(f(string))  # revealed: str
    reveal_type(f(*(string,)))  # revealed: str

    # `Any` matches both overloads, but the return types are not equivalent.
    # Pyright and mypy both reveal `str` here, contrary to the spec.
    reveal_type(f(any))  # revealed: Unknown
    reveal_type(f(*(any,)))  # revealed: Unknown

Generics

overloaded.pyi:

from typing import Any, TypeVar, overload

_T = TypeVar("_T")

class A: ...
class B: ...

@overload
def f(x: list[int]) -> A: ...
@overload
def f(x: list[_T]) -> _T: ...
@overload
def f(x: Any) -> B: ...
from typing import Any

from overloaded import f

def _(list_int: list[int], list_str: list[str], list_any: list[Any], any: Any):
    reveal_type(f(list_int))  # revealed: A
    # TODO: revealed: A
    reveal_type(f(*(list_int,)))  # revealed: Unknown

    # TODO: Should be `str`
    reveal_type(f(list_str))  # revealed: Unknown
    # TODO: Should be `str`
    reveal_type(f(*(list_str,)))  # revealed: Unknown

    reveal_type(f(list_any))  # revealed: Unknown
    reveal_type(f(*(list_any,)))  # revealed: Unknown

    reveal_type(f(any))  # revealed: Unknown
    reveal_type(f(*(any,)))  # revealed: Unknown

Generics (multiple arguments)

overloaded.pyi:

from typing import Any, TypeVar, overload

_T = TypeVar("_T")

@overload
def f(x: int, y: Any) -> int: ...
@overload
def f(x: str, y: _T) -> _T: ...
from typing import Any

from overloaded import f

def _(integer: int, string: str, any: Any, list_any: list[Any]):
    reveal_type(f(integer, string))  # revealed: int
    reveal_type(f(*(integer, string)))  # revealed: int

    reveal_type(f(string, integer))  # revealed: int
    # TODO: revealed: int
    # TODO: no error
    # error: [no-matching-overload]
    reveal_type(f(*(string, integer)))  # revealed: Unknown

    # This matches the second overload and is _not_ the case of ambiguous overload matching.
    reveal_type(f(string, any))  # revealed: Any
    # TODO: Any
    reveal_type(f(*(string, any)))  # revealed: tuple[str, Any]

    reveal_type(f(string, list_any))  # revealed: list[Any]
    # TODO: revealed: list[Any]
    # TODO: no error
    # error: [no-matching-overload]
    reveal_type(f(*(string, list_any)))  # revealed: Unknown

Generic self

overloaded.pyi:

from typing import Any, overload, TypeVar, Generic

_T = TypeVar("_T")

class A(Generic[_T]):
    @overload
    def method(self: "A[int]") -> int: ...
    @overload
    def method(self: "A[Any]") -> int: ...

class B(Generic[_T]):
    @overload
    def method(self: "B[int]") -> int: ...
    @overload
    def method(self: "B[Any]") -> str: ...
from typing import Any

from overloaded import A, B

def _(a_int: A[int], a_str: A[str], a_any: A[Any]):
    reveal_type(a_int.method())  # revealed: int
    reveal_type(a_str.method())  # revealed: int
    reveal_type(a_any.method())  # revealed: int

def _(b_int: B[int], b_str: B[str], b_any: B[Any]):
    reveal_type(b_int.method())  # revealed: int
    reveal_type(b_str.method())  # revealed: str
    reveal_type(b_any.method())  # revealed: Unknown

Variadic argument

overloaded.pyi:

from typing import Any, overload

class A: ...
class B: ...

@overload
def f1(x: int) -> A: ...
@overload
def f1(x: Any, y: Any) -> A: ...

@overload
def f2(x: int) -> A: ...
@overload
def f2(x: Any, y: Any) -> B: ...

@overload
def f3(x: int) -> A: ...
@overload
def f3(x: Any, y: Any) -> A: ...
@overload
def f3(x: Any, y: Any, *, z: str) -> B: ...

@overload
def f4(x: int) -> A: ...
@overload
def f4(x: Any, y: Any) -> B: ...
@overload
def f4(x: Any, y: Any, *, z: str) -> B: ...
from typing import Any

from overloaded import f1, f2, f3, f4

def _(arg: list[Any]):
    # Matches both overload and the return types are equivalent
    reveal_type(f1(*arg))  # revealed: A
    # Matches both overload but the return types aren't equivalent
    reveal_type(f2(*arg))  # revealed: Unknown
    # Filters out the final overload and the return types are equivalent
    reveal_type(f3(*arg))  # revealed: A
    # Filters out the final overload but the return types aren't equivalent
    reveal_type(f4(*arg))  # revealed: Unknown

Non-participating fully-static parameter

Ref: https://github.com/astral-sh/ty/issues/552#issuecomment-2969052173

A non-participating parameter would be the one where the set of materializations of the argument type, that are assignable to the parameter type at the same index, is same for the overloads for which step 5 needs to be performed.

overloaded.pyi:

from typing import Literal, overload

@overload
def f(x: str, *, flag: Literal[True]) -> int: ...
@overload
def f(x: str, *, flag: Literal[False] = ...) -> str: ...
@overload
def f(x: str, *, flag: bool = ...) -> int | str: ...

In the following example, for the f(any, flag=True) call, the materializations of first argument type Any that are assignable to str is same for overloads 1 and 3 (at the time of step 5), so for the purposes of overload matching that parameter can be ignored. If Any materializes to anything that's not assignable to str, all of the overloads would already be filtered out which will raise a no-matching-overload error.

from typing import Any

from overloaded import f

def _(any: Any):
    reveal_type(f(any, flag=True))  # revealed: int
    reveal_type(f(*(any,), flag=True))  # revealed: int

    reveal_type(f(any, flag=False))  # revealed: str
    reveal_type(f(*(any,), flag=False))  # revealed: str

Non-participating gradual parameter

overloaded.pyi:

from typing import Any, Literal, overload

@overload
def f(x: tuple[str, Any], flag: Literal[True]) -> int: ...
@overload
def f(x: tuple[str, Any], flag: Literal[False] = ...) -> str: ...
@overload
def f(x: tuple[str, Any], flag: bool = ...) -> int | str: ...
from typing import Any, Literal

from overloaded import f

def _(any: Any):
    reveal_type(f(any, flag=True))  # revealed: int
    reveal_type(f(*(any,), flag=True))  # revealed: int

    reveal_type(f(any, flag=False))  # revealed: str
    reveal_type(f(*(any,), flag=False))  # revealed: str

def _(args: tuple[Any, Literal[True]]):
    # TODO: revealed: int
    reveal_type(f(*args))  # revealed: Unknown

def _(args: tuple[Any, Literal[False]]):
    # TODO: revealed: str
    reveal_type(f(*args))  # revealed: Unknown

Argument type expansion

This filtering can also happen for each of the expanded argument lists.

No ambiguity

overloaded.pyi:

from typing import Any, overload

class A: ...
class B: ...

@overload
def f(x: tuple[A, B]) -> A: ...
@overload
def f(x: tuple[B, A]) -> B: ...
@overload
def f(x: tuple[A, Any]) -> A: ...
@overload
def f(x: tuple[B, Any]) -> B: ...

Here, the argument tuple[A | B, Any] doesn't match any of the overloads, so we perform argument type expansion which results in two argument lists:

  1. tuple[A, Any]
  2. tuple[B, Any]

The first argument list matches overload 1 and 3 via Any materialization for which the return types are equivalent (A). Similarly, the second argument list matches overload 2 and 4 via Any materialization for which the return types are equivalent (B). The final return type for the call will be the union of the return types.

from typing import Any

from overloaded import A, B, f

def _(arg: tuple[A | B, Any]):
    reveal_type(f(arg))  # revealed: A | B
    reveal_type(f(*(arg,)))  # revealed: A | B

One argument list ambiguous

The example used here is same as the previous one, but the return type of the last overload is changed so that it's not equivalent to the return type of the second overload, creating an ambiguous matching for the second argument list.

overloaded.pyi:

from typing import Any, overload

class A: ...
class B: ...
class C: ...

@overload
def f(x: tuple[A, B]) -> A: ...
@overload
def f(x: tuple[B, A]) -> B: ...
@overload
def f(x: tuple[A, Any]) -> A: ...
@overload
def f(x: tuple[B, Any]) -> C: ...
from typing import Any

from overloaded import A, B, C, f

def _(arg: tuple[A | B, Any]):
    reveal_type(f(arg))  # revealed: A | Unknown
    reveal_type(f(*(arg,)))  # revealed: A | Unknown

Both argument lists ambiguous

Here, both argument lists created by expanding the argument type are ambiguous, so the final return type is Any.

overloaded.pyi:

from typing import Any, overload

class A: ...
class B: ...
class C: ...

@overload
def f(x: tuple[A, B]) -> A: ...
@overload
def f(x: tuple[B, A]) -> B: ...
@overload
def f(x: tuple[A, Any]) -> C: ...
@overload
def f(x: tuple[B, Any]) -> C: ...
from typing import Any

from overloaded import A, B, C, f

def _(arg: tuple[A | B, Any]):
    reveal_type(f(arg))  # revealed: Unknown
    reveal_type(f(*(arg,)))  # revealed: Unknown