mirror of
https://github.com/astral-sh/ruff.git
synced 2025-10-06 00:20:37 +00:00
502 lines
18 KiB
Rust
502 lines
18 KiB
Rust
use ruff_db::files::{File, FilePath};
|
|
use ruff_db::source::line_index;
|
|
use ruff_python_ast as ast;
|
|
use ruff_python_ast::{Expr, ExprRef, HasNodeIndex, name::Name};
|
|
use ruff_source_file::LineIndex;
|
|
|
|
use crate::Db;
|
|
use crate::module_name::ModuleName;
|
|
use crate::module_resolver::{KnownModule, Module, resolve_module};
|
|
use crate::semantic_index::scope::FileScopeId;
|
|
use crate::semantic_index::semantic_index;
|
|
use crate::types::ide_support::all_declarations_and_bindings;
|
|
use crate::types::{Type, binding_type, infer_scope_types};
|
|
|
|
pub struct SemanticModel<'db> {
|
|
db: &'db dyn Db,
|
|
file: File,
|
|
}
|
|
|
|
impl<'db> SemanticModel<'db> {
|
|
pub fn new(db: &'db dyn Db, file: File) -> Self {
|
|
Self { db, file }
|
|
}
|
|
|
|
// TODO we don't actually want to expose the Db directly to lint rules, but we need to find a
|
|
// solution for exposing information from types
|
|
pub fn db(&self) -> &dyn Db {
|
|
self.db
|
|
}
|
|
|
|
pub fn file_path(&self) -> &FilePath {
|
|
self.file.path(self.db)
|
|
}
|
|
|
|
pub fn line_index(&self) -> LineIndex {
|
|
line_index(self.db, self.file)
|
|
}
|
|
|
|
pub fn resolve_module(&self, module_name: &ModuleName) -> Option<Module<'_>> {
|
|
resolve_module(self.db, module_name)
|
|
}
|
|
|
|
/// Returns completions for symbols available in a `from module import <CURSOR>` context.
|
|
pub fn import_completions(
|
|
&self,
|
|
import: &ast::StmtImportFrom,
|
|
_name: Option<usize>,
|
|
) -> Vec<Completion<'db>> {
|
|
let module_name = match ModuleName::from_import_statement(self.db, self.file, import) {
|
|
Ok(module_name) => module_name,
|
|
Err(err) => {
|
|
tracing::debug!(
|
|
"Could not extract module name from `{module:?}` with level {level}: {err:?}",
|
|
module = import.module,
|
|
level = import.level,
|
|
);
|
|
return vec![];
|
|
}
|
|
};
|
|
self.module_completions(&module_name)
|
|
}
|
|
|
|
/// Returns completions for symbols available in the given module as if
|
|
/// it were imported by this model's `File`.
|
|
fn module_completions(&self, module_name: &ModuleName) -> Vec<Completion<'db>> {
|
|
let Some(module) = resolve_module(self.db, module_name) else {
|
|
tracing::debug!("Could not resolve module from `{module_name:?}`");
|
|
return vec![];
|
|
};
|
|
let ty = Type::module_literal(self.db, self.file, module);
|
|
let builtin = module.is_known(self.db, KnownModule::Builtins);
|
|
|
|
let mut completions = vec![];
|
|
for crate::types::Member { name, ty } in crate::types::all_members(self.db, ty) {
|
|
completions.push(Completion { name, ty, builtin });
|
|
}
|
|
for submodule_basename in module.all_submodules(self.db) {
|
|
let Some(basename) = ModuleName::new(submodule_basename.as_str()) else {
|
|
continue;
|
|
};
|
|
let mut submodule_name = module_name.clone();
|
|
submodule_name.extend(&basename);
|
|
|
|
let Some(submodule) = resolve_module(self.db, &submodule_name) else {
|
|
continue;
|
|
};
|
|
let ty = Type::module_literal(self.db, self.file, submodule);
|
|
completions.push(Completion {
|
|
name: submodule_basename.clone(),
|
|
ty,
|
|
builtin,
|
|
});
|
|
}
|
|
completions
|
|
}
|
|
|
|
/// Returns completions for symbols available in a `object.<CURSOR>` context.
|
|
pub fn attribute_completions(&self, node: &ast::ExprAttribute) -> Vec<Completion<'db>> {
|
|
let ty = node.value.inferred_type(self);
|
|
crate::types::all_members(self.db, ty)
|
|
.into_iter()
|
|
.map(|member| Completion {
|
|
name: member.name,
|
|
ty: member.ty,
|
|
builtin: false,
|
|
})
|
|
.collect()
|
|
}
|
|
|
|
/// Returns completions for symbols available in the scope containing the
|
|
/// given expression.
|
|
///
|
|
/// If a scope could not be determined, then completions for the global
|
|
/// scope of this model's `File` are returned.
|
|
pub fn scoped_completions(&self, node: ast::AnyNodeRef<'_>) -> Vec<Completion<'db>> {
|
|
let index = semantic_index(self.db, self.file);
|
|
|
|
// TODO: We currently use `try_expression_scope_id` here as a hotfix for [1].
|
|
// Revert this to use `expression_scope_id` once a proper fix is in place.
|
|
//
|
|
// [1] https://github.com/astral-sh/ty/issues/572
|
|
let Some(file_scope) = (match node {
|
|
ast::AnyNodeRef::Identifier(identifier) => index.try_expression_scope_id(identifier),
|
|
node => match node.as_expr_ref() {
|
|
// If we couldn't identify a specific
|
|
// expression that we're in, then just
|
|
// fall back to the global scope.
|
|
None => Some(FileScopeId::global()),
|
|
Some(expr) => index.try_expression_scope_id(&expr),
|
|
},
|
|
}) else {
|
|
return vec![];
|
|
};
|
|
let mut completions = vec![];
|
|
for (file_scope, _) in index.ancestor_scopes(file_scope) {
|
|
completions.extend(
|
|
all_declarations_and_bindings(self.db, file_scope.to_scope_id(self.db, self.file))
|
|
.map(|member| Completion {
|
|
name: member.name,
|
|
ty: member.ty,
|
|
builtin: false,
|
|
}),
|
|
);
|
|
}
|
|
// Builtins are available in all scopes.
|
|
let builtins = ModuleName::new("builtins").expect("valid module name");
|
|
completions.extend(self.module_completions(&builtins));
|
|
completions
|
|
}
|
|
}
|
|
|
|
/// A classification of symbol names.
|
|
///
|
|
/// The ordering here is used for sorting completions.
|
|
///
|
|
/// This sorts "normal" names first, then dunder names and finally
|
|
/// single-underscore names. This matches the order of the variants defined for
|
|
/// this enum, which is in turn picked up by the derived trait implementation
|
|
/// for `Ord`.
|
|
#[derive(Clone, Copy, Eq, PartialEq, PartialOrd, Ord)]
|
|
pub enum NameKind {
|
|
Normal,
|
|
Dunder,
|
|
Sunder,
|
|
}
|
|
|
|
impl NameKind {
|
|
pub fn classify(name: &Name) -> NameKind {
|
|
// Dunder needs a prefix and suffix double underscore.
|
|
// When there's only a prefix double underscore, this
|
|
// results in explicit name mangling. We let that be
|
|
// classified as-if they were single underscore names.
|
|
//
|
|
// Ref: <https://docs.python.org/3/reference/lexical_analysis.html#reserved-classes-of-identifiers>
|
|
if name.starts_with("__") && name.ends_with("__") {
|
|
NameKind::Dunder
|
|
} else if name.starts_with('_') {
|
|
NameKind::Sunder
|
|
} else {
|
|
NameKind::Normal
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A suggestion for code completion.
|
|
#[derive(Clone, Debug)]
|
|
pub struct Completion<'db> {
|
|
/// The label shown to the user for this suggestion.
|
|
pub name: Name,
|
|
/// The type of this completion.
|
|
pub ty: Type<'db>,
|
|
/// Whether this suggestion came from builtins or not.
|
|
///
|
|
/// At time of writing (2025-06-26), this information
|
|
/// doesn't make it into the LSP response. Instead, we
|
|
/// use it mainly in tests so that we can write less
|
|
/// noisy tests.
|
|
pub builtin: bool,
|
|
}
|
|
|
|
impl<'db> Completion<'db> {
|
|
/// Returns the "kind" of this completion.
|
|
///
|
|
/// This is meant to be a very general classification of this completion.
|
|
/// Typically, this is communicated from the LSP server to a client, and
|
|
/// the client uses this information to help improve the UX (perhaps by
|
|
/// assigning an icon of some kind to the completion).
|
|
pub fn kind(&self, db: &'db dyn Db) -> Option<CompletionKind> {
|
|
fn imp<'db>(db: &'db dyn Db, ty: Type<'db>) -> Option<CompletionKind> {
|
|
Some(match ty {
|
|
Type::FunctionLiteral(_)
|
|
| Type::DataclassDecorator(_)
|
|
| Type::WrapperDescriptor(_)
|
|
| Type::DataclassTransformer(_)
|
|
| Type::Callable(_) => CompletionKind::Function,
|
|
Type::BoundMethod(_) | Type::MethodWrapper(_) => CompletionKind::Method,
|
|
Type::ModuleLiteral(_) => CompletionKind::Module,
|
|
Type::ClassLiteral(_) | Type::GenericAlias(_) | Type::SubclassOf(_) => {
|
|
CompletionKind::Class
|
|
}
|
|
// This is a little weird for "struct." I'm mostly interpreting
|
|
// "struct" here as a more general "object." ---AG
|
|
Type::NominalInstance(_)
|
|
| Type::PropertyInstance(_)
|
|
| Type::Tuple(_)
|
|
| Type::BoundSuper(_)
|
|
| Type::TypedDict(_) => CompletionKind::Struct,
|
|
Type::IntLiteral(_)
|
|
| Type::BooleanLiteral(_)
|
|
| Type::TypeIs(_)
|
|
| Type::StringLiteral(_)
|
|
| Type::LiteralString
|
|
| Type::BytesLiteral(_) => CompletionKind::Value,
|
|
Type::EnumLiteral(_) => CompletionKind::Enum,
|
|
Type::ProtocolInstance(_) => CompletionKind::Interface,
|
|
Type::TypeVar(_) => CompletionKind::TypeParameter,
|
|
Type::Union(union) => union.elements(db).iter().find_map(|&ty| imp(db, ty))?,
|
|
Type::Intersection(intersection) => {
|
|
intersection.iter_positive(db).find_map(|ty| imp(db, ty))?
|
|
}
|
|
Type::Dynamic(_)
|
|
| Type::Never
|
|
| Type::SpecialForm(_)
|
|
| Type::KnownInstance(_)
|
|
| Type::AlwaysTruthy
|
|
| Type::AlwaysFalsy => return None,
|
|
})
|
|
}
|
|
imp(db, self.ty)
|
|
}
|
|
}
|
|
|
|
/// The "kind" of a completion.
|
|
///
|
|
/// This is taken directly from the LSP completion specification:
|
|
/// <https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/#completionItemKind>
|
|
///
|
|
/// The idea here is that `Completion::kind` defines the mapping to this from
|
|
/// `Type` (and possibly other information), which might be interesting and
|
|
/// contentious. Then the outer edges map this to the LSP types, which is
|
|
/// expected to be mundane and boring.
|
|
#[derive(Clone, Copy, Debug)]
|
|
pub enum CompletionKind {
|
|
Text,
|
|
Method,
|
|
Function,
|
|
Constructor,
|
|
Field,
|
|
Variable,
|
|
Class,
|
|
Interface,
|
|
Module,
|
|
Property,
|
|
Unit,
|
|
Value,
|
|
Enum,
|
|
Keyword,
|
|
Snippet,
|
|
Color,
|
|
File,
|
|
Reference,
|
|
Folder,
|
|
EnumMember,
|
|
Constant,
|
|
Struct,
|
|
Event,
|
|
Operator,
|
|
TypeParameter,
|
|
}
|
|
|
|
pub trait HasType {
|
|
/// Returns the inferred type of `self`.
|
|
///
|
|
/// ## Panics
|
|
/// May panic if `self` is from another file than `model`.
|
|
fn inferred_type<'db>(&self, model: &SemanticModel<'db>) -> Type<'db>;
|
|
}
|
|
|
|
impl HasType for ast::ExprRef<'_> {
|
|
fn inferred_type<'db>(&self, model: &SemanticModel<'db>) -> Type<'db> {
|
|
let index = semantic_index(model.db, model.file);
|
|
let file_scope = index.expression_scope_id(self);
|
|
let scope = file_scope.to_scope_id(model.db, model.file);
|
|
|
|
infer_scope_types(model.db, scope).expression_type(*self)
|
|
}
|
|
}
|
|
|
|
macro_rules! impl_expression_has_type {
|
|
($ty: ty) => {
|
|
impl HasType for $ty {
|
|
#[inline]
|
|
fn inferred_type<'db>(&self, model: &SemanticModel<'db>) -> Type<'db> {
|
|
let expression_ref = ExprRef::from(self);
|
|
expression_ref.inferred_type(model)
|
|
}
|
|
}
|
|
};
|
|
}
|
|
|
|
impl_expression_has_type!(ast::ExprBoolOp);
|
|
impl_expression_has_type!(ast::ExprNamed);
|
|
impl_expression_has_type!(ast::ExprBinOp);
|
|
impl_expression_has_type!(ast::ExprUnaryOp);
|
|
impl_expression_has_type!(ast::ExprLambda);
|
|
impl_expression_has_type!(ast::ExprIf);
|
|
impl_expression_has_type!(ast::ExprDict);
|
|
impl_expression_has_type!(ast::ExprSet);
|
|
impl_expression_has_type!(ast::ExprListComp);
|
|
impl_expression_has_type!(ast::ExprSetComp);
|
|
impl_expression_has_type!(ast::ExprDictComp);
|
|
impl_expression_has_type!(ast::ExprGenerator);
|
|
impl_expression_has_type!(ast::ExprAwait);
|
|
impl_expression_has_type!(ast::ExprYield);
|
|
impl_expression_has_type!(ast::ExprYieldFrom);
|
|
impl_expression_has_type!(ast::ExprCompare);
|
|
impl_expression_has_type!(ast::ExprCall);
|
|
impl_expression_has_type!(ast::ExprFString);
|
|
impl_expression_has_type!(ast::ExprTString);
|
|
impl_expression_has_type!(ast::ExprStringLiteral);
|
|
impl_expression_has_type!(ast::ExprBytesLiteral);
|
|
impl_expression_has_type!(ast::ExprNumberLiteral);
|
|
impl_expression_has_type!(ast::ExprBooleanLiteral);
|
|
impl_expression_has_type!(ast::ExprNoneLiteral);
|
|
impl_expression_has_type!(ast::ExprEllipsisLiteral);
|
|
impl_expression_has_type!(ast::ExprAttribute);
|
|
impl_expression_has_type!(ast::ExprSubscript);
|
|
impl_expression_has_type!(ast::ExprStarred);
|
|
impl_expression_has_type!(ast::ExprName);
|
|
impl_expression_has_type!(ast::ExprList);
|
|
impl_expression_has_type!(ast::ExprTuple);
|
|
impl_expression_has_type!(ast::ExprSlice);
|
|
impl_expression_has_type!(ast::ExprIpyEscapeCommand);
|
|
|
|
impl HasType for ast::Expr {
|
|
fn inferred_type<'db>(&self, model: &SemanticModel<'db>) -> Type<'db> {
|
|
match self {
|
|
Expr::BoolOp(inner) => inner.inferred_type(model),
|
|
Expr::Named(inner) => inner.inferred_type(model),
|
|
Expr::BinOp(inner) => inner.inferred_type(model),
|
|
Expr::UnaryOp(inner) => inner.inferred_type(model),
|
|
Expr::Lambda(inner) => inner.inferred_type(model),
|
|
Expr::If(inner) => inner.inferred_type(model),
|
|
Expr::Dict(inner) => inner.inferred_type(model),
|
|
Expr::Set(inner) => inner.inferred_type(model),
|
|
Expr::ListComp(inner) => inner.inferred_type(model),
|
|
Expr::SetComp(inner) => inner.inferred_type(model),
|
|
Expr::DictComp(inner) => inner.inferred_type(model),
|
|
Expr::Generator(inner) => inner.inferred_type(model),
|
|
Expr::Await(inner) => inner.inferred_type(model),
|
|
Expr::Yield(inner) => inner.inferred_type(model),
|
|
Expr::YieldFrom(inner) => inner.inferred_type(model),
|
|
Expr::Compare(inner) => inner.inferred_type(model),
|
|
Expr::Call(inner) => inner.inferred_type(model),
|
|
Expr::FString(inner) => inner.inferred_type(model),
|
|
Expr::TString(inner) => inner.inferred_type(model),
|
|
Expr::StringLiteral(inner) => inner.inferred_type(model),
|
|
Expr::BytesLiteral(inner) => inner.inferred_type(model),
|
|
Expr::NumberLiteral(inner) => inner.inferred_type(model),
|
|
Expr::BooleanLiteral(inner) => inner.inferred_type(model),
|
|
Expr::NoneLiteral(inner) => inner.inferred_type(model),
|
|
Expr::EllipsisLiteral(inner) => inner.inferred_type(model),
|
|
Expr::Attribute(inner) => inner.inferred_type(model),
|
|
Expr::Subscript(inner) => inner.inferred_type(model),
|
|
Expr::Starred(inner) => inner.inferred_type(model),
|
|
Expr::Name(inner) => inner.inferred_type(model),
|
|
Expr::List(inner) => inner.inferred_type(model),
|
|
Expr::Tuple(inner) => inner.inferred_type(model),
|
|
Expr::Slice(inner) => inner.inferred_type(model),
|
|
Expr::IpyEscapeCommand(inner) => inner.inferred_type(model),
|
|
}
|
|
}
|
|
}
|
|
|
|
macro_rules! impl_binding_has_ty {
|
|
($ty: ty) => {
|
|
impl HasType for $ty {
|
|
#[inline]
|
|
fn inferred_type<'db>(&self, model: &SemanticModel<'db>) -> Type<'db> {
|
|
let index = semantic_index(model.db, model.file);
|
|
let binding = index.expect_single_definition(self);
|
|
binding_type(model.db, binding)
|
|
}
|
|
}
|
|
};
|
|
}
|
|
|
|
impl_binding_has_ty!(ast::StmtFunctionDef);
|
|
impl_binding_has_ty!(ast::StmtClassDef);
|
|
impl_binding_has_ty!(ast::Parameter);
|
|
impl_binding_has_ty!(ast::ParameterWithDefault);
|
|
impl_binding_has_ty!(ast::ExceptHandlerExceptHandler);
|
|
|
|
impl HasType for ast::Alias {
|
|
fn inferred_type<'db>(&self, model: &SemanticModel<'db>) -> Type<'db> {
|
|
if &self.name == "*" {
|
|
return Type::Never;
|
|
}
|
|
let index = semantic_index(model.db, model.file);
|
|
binding_type(model.db, index.expect_single_definition(self))
|
|
}
|
|
}
|
|
|
|
/// Implemented by types for which the semantic index tracks their scope.
|
|
pub(crate) trait HasTrackedScope: HasNodeIndex {}
|
|
|
|
impl HasTrackedScope for ast::Expr {}
|
|
|
|
impl HasTrackedScope for ast::ExprRef<'_> {}
|
|
impl HasTrackedScope for &ast::ExprRef<'_> {}
|
|
|
|
// See https://github.com/astral-sh/ty/issues/572 why this implementation exists
|
|
// even when we never register identifiers during semantic index building.
|
|
impl HasTrackedScope for ast::Identifier {}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use ruff_db::files::system_path_to_file;
|
|
use ruff_db::parsed::parsed_module;
|
|
|
|
use crate::db::tests::TestDbBuilder;
|
|
use crate::{HasType, SemanticModel};
|
|
|
|
#[test]
|
|
fn function_type() -> anyhow::Result<()> {
|
|
let db = TestDbBuilder::new()
|
|
.with_file("/src/foo.py", "def test(): pass")
|
|
.build()?;
|
|
|
|
let foo = system_path_to_file(&db, "/src/foo.py").unwrap();
|
|
|
|
let ast = parsed_module(&db, foo).load(&db);
|
|
|
|
let function = ast.suite()[0].as_function_def_stmt().unwrap();
|
|
let model = SemanticModel::new(&db, foo);
|
|
let ty = function.inferred_type(&model);
|
|
|
|
assert!(ty.is_function_literal());
|
|
|
|
Ok(())
|
|
}
|
|
|
|
#[test]
|
|
fn class_type() -> anyhow::Result<()> {
|
|
let db = TestDbBuilder::new()
|
|
.with_file("/src/foo.py", "class Test: pass")
|
|
.build()?;
|
|
|
|
let foo = system_path_to_file(&db, "/src/foo.py").unwrap();
|
|
|
|
let ast = parsed_module(&db, foo).load(&db);
|
|
|
|
let class = ast.suite()[0].as_class_def_stmt().unwrap();
|
|
let model = SemanticModel::new(&db, foo);
|
|
let ty = class.inferred_type(&model);
|
|
|
|
assert!(ty.is_class_literal());
|
|
|
|
Ok(())
|
|
}
|
|
|
|
#[test]
|
|
fn alias_type() -> anyhow::Result<()> {
|
|
let db = TestDbBuilder::new()
|
|
.with_file("/src/foo.py", "class Test: pass")
|
|
.with_file("/src/bar.py", "from foo import Test")
|
|
.build()?;
|
|
|
|
let bar = system_path_to_file(&db, "/src/bar.py").unwrap();
|
|
|
|
let ast = parsed_module(&db, bar).load(&db);
|
|
|
|
let import = ast.suite()[0].as_import_from_stmt().unwrap();
|
|
let alias = &import.names[0];
|
|
let model = SemanticModel::new(&db, bar);
|
|
let ty = alias.inferred_type(&model);
|
|
|
|
assert!(ty.is_class_literal());
|
|
|
|
Ok(())
|
|
}
|
|
}
|