mirror of
https://github.com/erg-lang/erg.git
synced 2025-09-29 12:24:45 +00:00
5.1 KiB
5.1 KiB
篩型
篩型とは、以下のような型である。
{I: Int | I >= 0}
{S: StrWithLen N | N >= 1}
{T: (Ratio, Ratio) | T.0 >= 0; T.1 >= 0}
1,2番目のようにレイアウトが自明な場合は以下のように省略できる。
{I: Int | I >= 0}
StrWithLen N | N >= 1
ErgではEnum, Interval, Refined dependent type型を篩型に変換してしまうことで、型判定を可能にしている。
篩型への変換
[篩型]の項では、区間型および列挙型は、篩型の糖衣構文であると述べた。それぞれ、以下のように変換される。
- {0} -> {I: Int | I == 0}
- {0, 1} -> {I: Int | I == 0 or I == 1}
- 1.._ -> {I: Int | I >= 1}
- 1<.._ -> {I: Int | I > 1} -> {I: Int | I >= 2}
- {0} or 1.._ -> {I: Int | I == 0 or I >= 1}
- {0} or {-3, -2} or 1.._ -> {I: Int | I == 0 or (I == -2 or I == -3) or I >= 1}
- {0} and {-3, 0} -> {I: Int | I == 0 and (I == -3 or I == 0)}
- {0} not {-3, 0} or 1.._ -> {I: Int | I == 0 and not (I == -3 or I == 0) or I >= 1}
型の型判定
篩型Aが別の篩型Bのサブタイプであるか判定するアルゴリズムを説明する。形式的には、サブタイプ判定は以下のように定義される。
A < B <=> ∀a∈A; a ∈ B
具体的には以下の推論規則を適用する。ブール式は簡約済みとする(よって、(A or B or C)
などは現れない)。
- 区間化規則(型定義から自動で行われる)
Nat
=>{I: Int | I >= 0}
- 切上規則
{I: Int | I < n}
=>{I: Int | I <= n-1}
{I: Int | I > n}
=>{I: Int | I >= n+1}
{R: Ratio | R < n}
=>{R: Ratio | R <= n-ε}
{R: Ratio | R > n}
=>{R: Ratio | R >= n+ε}
- 反転規則
{A not B}
=>{A and (not B)}
- ド・モルガンの法則
{not (A or B)}
=>{not A and not B}
{not (A and B)}
=>{not A or not B}
- 分配規則
{A and (B or C)} <: D
=>{(A and B) or (A and C)} <: D
=>({A and B} <: D) and ({A and C} <: D)
{(A or B) and C} <: D
=>{(C and A) or (C and B)} <: D
=>({C and A} <: D) and ({C and B} <: D)
D <: {A or (B and C)}
=>D <: {(A or B) and (A or C)}
=>(D <: {A or B}) and (D <: {A or C})
D <: {(A and B) or C}
=>D <: {(C or A) and (C or B)}
=>(D <: {C or A}) and (D <: {C or B})
{A or B} <: C
=>({A} <: C) and ({B} <: C)
A <: {B and C}
=>(A <: {B}) and (A <: {C})
- 終端規則
- {I: T | ...} <: T = True
- {} <: _ = True
- _ <: {...} = True
- {...} <: _ = False
- _ <: {} == False
- {I >= a and I <= b} (a < b) <: {I >= c} = (a >= c)
- {I >= a and I <= b} (a < b) <: {I <= d} = (b <= d)
- {I >= a} <: {I >= c or I <= d} (c >= d) = (a >= c)
- {I <= b} <: {I >= c or I <= d} (c >= d) = (b <= d)
- {I >= a and I <= b} (a <= b) <: {I >= c or I <= d} (c > d) = ((a >= c) or (b <= d))
- 基本式
- {I >= l} <: {I >= r} = (l >= r)
- {I <= l} <: {I <= r} = (l <= r)
- {I >= l} <: {I <= r} = False
- {I <= l} <: {I >= r} = False
ブール式の簡約規則は以下の通り。min, maxは除去できない可能性がある。また、複数並んだor, andはネストしたmin, maxに変換される。
- 順序化規則
I == a
=>I >= a and I <= a
i != a
=>I >= a+1 or I <= a-1
- 恒真規則
I >= a or I <= b (a < b)
=={...}
- 恒偽規則
I >= a and I <= b (a > b)
=={}
- 入替規則
- 順序式は
I >= n
,I <= n
の順に入れ替える。
- 順序式は
- 延長規則
I == n or I >= n+1
=>I >= n
I == n or I <= n-1
=>I <= n
- 最大規則
I <= m or I <= n
=>I <= max(m, n)
I >= m and I >= n
=>I >= max(m, n)
- 最小規則
I >= m or I >= n
=>I >= min(m, n)
I <= m and I <= n
=>I <= min(m, n)
- 除去規則
- 左辺にある
I == n
は、右辺にI >= a (n >= a)
かI <= b (n <= b)
かI == n
があるとき除去できる。 - 左辺の等式をすべて除去できなければFalse
- 左辺にある
e.g.
1.._ <: Nat
=> {I: Int | I >= 1} <: {I: Int | I >= 0}
=> {I >= 1} <: {I >= 0}
=> (I >= 0 => I >= 1)
=> 1 >= 0
=> True
# {I >= l} <: {I >= r} == (l >= r)
# {I <= l} <: {I <= r} == (l <= r)
{I: Int | I >= 0} <: {I: Int | I >= 1 or I <= -3}
=> {I >= 0} <: {I >= 1 or I <= -3}
=> {I >= 0} <: {I >= 1} or {I >= 0} <: {I <= -3}
=> False or False
=> False
{I: Int | I >= 0} <: {I: Int | I >= -3 and I <= 1}
=> {I >= 0} <: {I >= -3 and I <= 1}
=> {I >= 0} <: {I >= -3} and {I >= 0} <: {I <= 1}
=> True and False
=> False
{I: Int | I >= 2 or I == -2 or I <= -4} <: {I: Int | I >= 1 or I <= -1}
=> {I >= 2 or I <= -4 or I == -2} <: {I >= 1 or I <= -1}
=> {I >= 2 or I <= -4} <: {I >= 1 or I <= -1}
and {I == -2} <: {I >= 1 or I <= -1}
=> {I >= 2} <: {I >= 1 or I <= -1}
and {I <= -4} <: {I >= 1 or I <= -1}
and
{I == -2} <: {I >= 1}
or {I == -2} <: {I <= -1}
=> {I >= 2} <: {I >= 1}
or {I >= 2} <: {I <= -1}
and
{I <= -4} <: {I >= 1}
or {I <= -4} <: {I <= -1}
and
False or True
=> True or False
and
False or True
and
True
=> True and True
=> True