Constraint sets can now track subtyping/assignability/etc of generic
callables correctly. For instance:
```py
def identity[T](t: T) -> T:
return t
constraints = ConstraintSet.always()
static_assert(constraints.implies_subtype_of(TypeOf[identity], Callable[[int], int]))
static_assert(constraints.implies_subtype_of(TypeOf[identity], Callable[[str], str]))
```
A generic callable can be considered an intersection of all of its
possible specializations, and an assignability check with an
intersection as the lhs side succeeds of _any_ of the intersected types
satisfies the check. Put another way, if someone expects to receive any
function with a signature of `(int) -> int`, we can give them
`identity`.
Note that the corresponding check using `is_subtype_of` directly does
not yet work, since #20093 has not yet hooked up the core typing
relationship logic to use constraint sets:
```py
# These currently fail
static_assert(is_subtype_of(TypeOf[identity], Callable[[int], int]))
static_assert(is_subtype_of(TypeOf[identity], Callable[[str], str]))
```
To do this, we add a new _existential quantification_ operation on
constraint sets. This takes in a list of typevars and _removes_ those
typevars from the constraint set. Conceptually, we return a new
constraint set that evaluates to `true` when there was _any_ assignment
of the removed typevars that caused the old constraint set to evaluate
to `true`.
When comparing a generic constraint set, we add its typevars to the
`inferable` set, and figure out whatever constraints would allow any
specialization to satisfy the check. We then use the new existential
quantification operator to remove those new typevars, since the caller
doesn't (and shouldn't) know anything about them.
---------
Co-authored-by: David Peter <sharkdp@users.noreply.github.com>
Closes#19350
This fixes a syntax error caused by formatting. However, the new tests reveal that there are some cases where formatting attributes with certain comments behaves strangely, both before and after this PR, so some more polish may be in order.
For example, without parentheses around the value, and both before and after this PR, we have:
```python
# unformatted
variable = (
something # a comment
.first_method("some string")
)
# formatted
variable = something.first_method("some string") # a comment
```
which is probably not where the comment ought to go.
<!--
Thank you for contributing to Ruff/ty! To help us out with reviewing,
please consider the following:
- Does this pull request include a summary of the change? (See below.)
- Does this pull request include a descriptive title? (Please prefix
with `[ty]` for ty pull
requests.)
- Does this pull request include references to any relevant issues?
-->
## Summary
<!-- What's the purpose of the change? What does it do, and why? -->
Partially addresses https://github.com/astral-sh/ty/issues/1562
Only suggest the keyword "as" in import statements when the user have
written `import foo a<CURSOR>` or `from foo import bar a<CURSOR>` as no
other suggestion makes sense here.
Re-uses the existing pattern for incomplete `import from` statements to
determine incomplete import alias statements and make the suggestions
more sane in those cases.
There was a potential suggestion from @BurntSushi in
https://github.com/astral-sh/ty/issues/1562#issue-3626853513 to move the
handling of import statements into one unified state machine but I acted
on the side of caution and fixed this with already established patterns,
pending a potential bigger re-write down the line.
## Test Plan
Added new tests and checked that it behaved reasonable in the
playground.
<!-- How was it tested? -->
This PR attempts to improve the placement of own-line comments between
branches in the setting where the comment is more indented than the
preceding node.
There are two main changes.
### First change: Preceding node has leading content
If the preceding node has leading content, we now regard the comment as
automatically _less_ indented than the preceding node, and format
accordingly.
For example,
```python
if True: preceding_node
# leading on `else`, not trailing on `preceding_node`
else: ...
```
This is more compatible with `black`, although there is a (presumably
very uncommon) edge case:
```python
if True:
this;that
# leading on `else`, but trailing in `black`
else: ...
```
I'm sort of okay with this - presumably if one wanted a comment for
those semi-colon separated statements, one should have put it _above_
them, and one wanted a comment only for `that` then it ought to have
been on the same line?
### Second change: searching for last child in body
While searching for the (recursively) last child in the body of the
preceding _branch_, we implicitly assumed that the preceding node had to
have a body to begin the recursion. But actually, in the base case, the
preceding node _is_ the last child in the body of the preceding branch.
So, for example:
```python
if True:
something
last_child_but_no_body
# leading on else for `main` but trailing in this PR
else: ...
```
### More examples
The table below is an attempt to summarize the changes in behavior. The
rows alternate between an example snippet with `while` and the same
example with `if` - in the former case we do _not_ have an `else` node
and in the latter we do.
Notice that:
1. On `main` our handling of `if` vs. `while` is not consistent, whereas
it is consistent in the present PR
2. We disagree with `black` in all cases except that last example on
`main`, but agree in all cases for the present PR (though see above for
a wonky edge case where we disagree).
<table>
<tr>
<th>Original
</th>
<th><code>main</code> </th>
<th>This
PR </th>
<th><code>black</code> </th>
</tr>
<tr>
<td>
<pre lang="python">
while True:
pass
# comment
else:
pass
</pre>
</td>
<td>
<pre lang="python">
while True:
pass
else:
# comment
pass
</pre>
</td>
<td>
<pre lang="python">
while True:
pass
# comment
else:
pass
</pre>
</td>
<td>
<pre lang="python">
while True:
pass
# comment
else:
pass
</pre>
</td>
</tr>
<tr>
<td>
<pre lang="python">
if True:
pass
# comment
else:
pass
</pre>
</td>
<td>
<pre lang="python">
if True:
pass
# comment
else:
pass
</pre>
</td>
<td>
<pre lang="python">
if True:
pass
# comment
else:
pass
</pre>
</td>
<td>
<pre lang="python">
if True:
pass
# comment
else:
pass
</pre>
</td>
</tr>
<tr>
<td>
<pre lang="python">
while True: pass
# comment
else:
pass
</pre>
</td>
<td>
<pre lang="python">
while True:
pass
# comment
else:
pass
</pre>
</td>
<td>
<pre lang="python">
while True:
pass
# comment
else:
pass
</pre>
</td>
<td>
<pre lang="python">
while True:
pass
# comment
else:
pass
</pre>
</td>
</tr>
<tr>
<td>
<pre lang="python">
if True: pass
# comment
else:
pass
</pre>
</td>
<td>
<pre lang="python">
if True:
pass
# comment
else:
pass
</pre>
</td>
<td>
<pre lang="python">
if True:
pass
# comment
else:
pass
</pre>
</td>
<td>
<pre lang="python">
if True:
pass
# comment
else:
pass
</pre>
</td>
</tr>
<tr>
<td>
<pre lang="python">
while True: pass
# comment
else:
pass
</pre>
</td>
<td>
<pre lang="python">
while True:
pass
else:
# comment
pass
</pre>
</td>
<td>
<pre lang="python">
while True:
pass
# comment
else:
pass
</pre>
</td>
<td>
<pre lang="python">
while True:
pass
# comment
else:
pass
</pre>
</td>
</tr>
<tr>
<td>
<pre lang="python">
if True: pass
# comment
else:
pass
</pre>
</td>
<td>
<pre lang="python">
if True:
pass
# comment
else:
pass
</pre>
</td>
<td>
<pre lang="python">
if True:
pass
# comment
else:
pass
</pre>
</td>
<td>
<pre lang="python">
if True:
pass
# comment
else:
pass
</pre>
</td>
</tr>
</table>
## Summary
Follow up from https://github.com/astral-sh/ruff/pull/21411. Again,
there are more things that could be improved here (like the diagnostics
for `lists`, or extending what we have for `dict` to `OrderedDict` etc),
but that will have to be postponed.
## Summary
We previously only allowed models to overwrite the
`{eq,order,kw_only,frozen}_defaults` of the dataclass-transformer, but
all other standard-dataclass parameters should be equally supported with
the same behavior.
## Test Plan
Added regression tests.
## Summary
Not a high-priority task... but it _is_ a weekend :P
This PR improves our diagnostics for invalid exceptions. Specifically:
- We now give a special-cased ``help: Did you mean
`NotImplementedError`` subdiagnostic for `except NotImplemented`, `raise
NotImplemented` and `raise <EXCEPTION> from NotImplemented`
- If the user catches a tuple of exceptions (`except (foo, bar, baz):`)
and multiple elements in the tuple are invalid, we now collect these
into a single diagnostic rather than emitting a separate diagnostic for
each tuple element
- The explanation of why the `except`/`raise` was invalid ("must be a
`BaseException` instance or `BaseException` subclass", etc.) is
relegated to a subdiagnostic. This makes the top-level diagnostic
summary much more concise.
## Test Plan
Lots of snapshots. And here's some screenshots:
<details>
<summary>Screenshots</summary>
<img width="1770" height="1520" alt="image"
src="https://github.com/user-attachments/assets/7f27fd61-c74d-4ddf-ad97-ea4fd24d06fd"
/>
<img width="1916" height="1392" alt="image"
src="https://github.com/user-attachments/assets/83e5027c-8798-48a6-a0ec-1babfc134000"
/>
<img width="1696" height="588" alt="image"
src="https://github.com/user-attachments/assets/1bc16048-6eb4-4dfa-9ace-dd271074530f"
/>
</details>
## Summary
Allow metaclass-based and baseclass-based dataclass-transformers to
overwrite the default behavior using class arguments:
```py
class Person(Model, order=True):
# ...
```
## Conformance tests
Four new tests passing!
## Test Plan
New Markdown tests
This PR updates the constraint implication type relationship to work on
compound types as well. (A compound type is a non-atomic type, like
`list[T]`.)
The goal of constraint implication is to check whether the requirements
of a constraint imply that a particular subtyping relationship holds.
Before, we were only checking atomic typevars. That would let us verify
that the constraint set `T ≤ bool` implies that `T` is always a subtype
of `int`. (In this case, the lhs of the subtyping check, `T`, is an
atomic typevar.)
But we weren't recursing into compound types, to look for nested
occurrences of typevars. That means that we weren't able to see that `T
≤ bool` implies that `Covariant[T]` is always a subtype of
`Covariant[int]`.
Doing this recursion means that we have to carry the constraint set
along with us as we recurse into types as part of `has_relation_to`, by
adding constraint implication as a new `TypeRelation` variant. (Before
it was just a method on `ConstraintSet`.)
---------
Co-authored-by: David Peter <sharkdp@users.noreply.github.com>
## Summary
Currently our diagnostic only covers the range of the thing being
subscripted:
<img width="1702" height="312" alt="image"
src="https://github.com/user-attachments/assets/7e630431-e846-46ca-93c1-139f11aaba11"
/>
But it should probably cover the _whole_ subscript expression (arguably
the more "incorrect" bit is the `["foo"]` part of this expression, not
the `x` part of this expression!)
## Test Plan
Added a snapshot
Co-authored-by: Brent Westbrook
<36778786+ntBre@users.noreply.github.com>
## Summary
Extends literal promotion to apply to any generic method, as opposed to
only generic class constructors. This PR also improves our literal
promotion heuristics to only promote literals in non-covariant position
in the return type, and avoid promotion if the literal is present in
non-covariant position in any argument type.
Resolves https://github.com/astral-sh/ty/issues/1357.
## Summary
- Always restore the previous `deferred_state` after parsing a type
expression: we don't want that state leaking out into other contexts
where we shouldn't be deferring expression inference
- Always defer the right-hand-side of a PEP-613 type alias in a stub
file, allowing for forward references on the right-hand side of `T:
TypeAlias = X | Y` in a stub file
Addresses @carljm's review in
https://github.com/astral-sh/ruff/pull/21401#discussion_r2524260153
## Test Plan
I added a regression test for a regression that the first version of
this PR introduced (we need to make sure the r.h.s. of a PEP-613
`TypeAlias`es is always deferred in a stub file)
## Summary
We currently fail to account for the type context when inferring generic
classes constructed with `__new__`, or synthesized `__init__` for
dataclasses.
There are a few places in Python where it is known that new names are
being introduced and thus we probably shouldn't offer completions. We
already handle this today for things like `class <CURSOR>` and `def
<CURSOR>`. But we didn't handle `as <CURSOR>`, which can appear in
`import`, `with`, `except` and `match` statements. Indeed, these are
exactly the 4 cases where the `as` keyword can occur. So we look for the
presence of `as` and suppress completions based on that.
While we're here, we also make the implementation a bit more robust with
respect to suppressing completions when the user hasn't typed anything.
Namely, previously, we'd still offer completions in a `class <CURSOR>`
context. But it looks like LSP clients (at least, VS Code) doesn't ask
for completions here, so we were "saved" incidentally. This PR detects
this case and suppresses completions there so we don't rely on LSP
client behavior to handle that case correctly.
Fixesastral-sh/ty#1287
## Summary
Infer the first argument `type` inside `Annotated[type, …]` as a type
expression. This allows us to support stringified annotations inside
`Annotated`.
## Ecosystem
* The removed diagnostic on `prefect` shows that we now understand the
`State.data` type annotation in
`src/prefect/client/schemas/objects.py:230`, which uses a stringified
annotation in `Annoated`. The other diagnostics are downstream changes
that result from this, it seems to be a commonly used data type.
* `artigraph` does something like `Annotated[cast(Any,
field_info.annotation), *field_info.metadata]` which I'm not sure we
need to allow? It's unfortunate since this is probably supported at
runtime, but it seems reasonable that they need to add a `# type:
ignore` for that.
* `pydantic` uses something like `Annotated[(self.annotation,
*self.metadata)]` but adds a `# type: ignore`
## Test Plan
New Markdown test